Lorentz covariance


In relativistic physics, Lorentz symmetry, named for Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space".[1]


Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings:


  1. A physical quantity is said to be Lorentz covariant if it transforms under a given representation of the Lorentz group. According to the representation theory of the Lorentz group, these quantities are built out of scalars, four-vectors, four-tensors, and spinors. In particular, a Lorentz covariant scalar (e.g., the space-time interval) remains the same under Lorentz transformations and is said to be a Lorentz invariant (i.e., they transform under the trivial representation).

  2. An equation is said to be Lorentz covariant if it can be written in terms of Lorentz covariant quantities (confusingly, some use the term invariant here). The key property of such equations is that if they hold in one inertial frame, then they hold in any inertial frame; this follows from the result that if all the components of a tensor vanish in one frame, they vanish in every frame. This condition is a requirement according to the principle of relativity; i.e., all non-gravitational laws must make the same predictions for identical experiments taking place at the same spacetime event in two different inertial frames of reference.

On manifolds, the words covariant and contravariant refer to how objects transform under general coordinate transformations. Both covariant and contravariant four-vectors can be Lorentz covariant quantities.


Local Lorentz covariance, which follows from general relativity, refers to Lorentz covariance applying only locally in an infinitesimal region of spacetime at every point. There is a generalization of this concept to cover Poincaré covariance and Poincaré invariance.




Contents





  • 1 Examples

    • 1.1 Scalars


    • 1.2 Four-vectors


    • 1.3 Four-tensors



  • 2 Lorentz violating models


  • 3 See also


  • 4 Notes


  • 5 References




Examples


In general, the (transformational) nature of a Lorentz tensor[clarification needed] can be identified by its tensor order, which is the number of free indices it has. No indices implies it is a scalar, one implies that it is a vector, etc. Some tensors with a physical interpretation are listed below.


The sign convention of the Minkowski metric η = diag (1, −1, −1, −1) is used throughout the article.



Scalars


Spacetime interval

Δs2=ΔxaΔxbηab=c2Δt2−Δx2−Δy2−Δz2displaystyle Delta s^2=Delta x^aDelta x^beta _ab=c^2Delta t^2-Delta x^2-Delta y^2-Delta z^2Delta s^2=Delta x^aDelta x^beta _ab=c^2Delta t^2-Delta x^2-Delta y^2-Delta z^2


Proper time (for timelike intervals)

Δτ=Δs2c2,Δs2>0displaystyle Delta tau =sqrt frac Delta s^2c^2,,Delta s^2>0Delta tau =sqrt frac Delta s^2c^2,,Delta s^2>0


Proper distance (for spacelike intervals)

L=−Δs2,Δs2<0displaystyle L=sqrt -Delta s^2,,Delta s^2<0L=sqrt -Delta s^2,,Delta s^2<0

Mass

m02c2=PaPbηab=E2c2−px2−py2−pz2displaystyle m_0^2c^2=P^aP^beta _ab=frac E^2c^2-p_x^2-p_y^2-p_z^2m_0^2c^2=P^aP^beta _ab=frac E^2c^2-p_x^2-p_y^2-p_z^2

Electromagnetism invariants

FabFab= 2(B2−E2c2)GcdFcd=12ϵabcdFabFcd=−4c(B→⋅E→)displaystyle beginalignedF_abF^ab&= 2left(B^2-frac E^2c^2right)\G_cdF^cd&=frac 12epsilon _abcdF^abF^cd=-frac 4cleft(vec Bcdot vec Eright)endaligneddisplaystyle beginalignedF_abF^ab&= 2left(B^2-frac E^2c^2right)\G_cdF^cd&=frac 12epsilon _abcdF^abF^cd=-frac 4cleft(vec Bcdot vec Eright)endaligned


D'Alembertian/wave operator

◻=ημν∂μ∂ν=1c2∂2∂t2−∂2∂x2−∂2∂y2−∂2∂z2displaystyle Box =eta ^mu nu partial _mu partial _nu =frac 1c^2frac partial ^2partial t^2-frac partial ^2partial x^2-frac partial ^2partial y^2-frac partial ^2partial z^2displaystyle Box =eta ^mu nu partial _mu partial _nu =frac 1c^2frac partial ^2partial t^2-frac partial ^2partial x^2-frac partial ^2partial y^2-frac partial ^2partial z^2


Four-vectors


4-displacement

ΔXa=(cΔt,Δx→)=(cΔt,Δx,Δy,Δz)displaystyle Delta X^a=left(cDelta t,vec Delta xright)=(cDelta t,Delta x,Delta y,Delta z)displaystyle Delta X^a=left(cDelta t,vec Delta xright)=(cDelta t,Delta x,Delta y,Delta z)

4-position

Xa=(ct,x→)=(ct,x,y,z)displaystyle X^a=left(ct,vec xright)=(ct,x,y,z)displaystyle X^a=left(ct,vec xright)=(ct,x,y,z)

4-gradient

which is the 4D partial derivative:
∂a=(∂tc,−∇→)=(1c∂∂t,−∂∂x,−∂∂y,−∂∂z)displaystyle partial ^a=left(frac partial _tc,-vec nabla right)=left(frac 1cfrac partial partial t,-frac partial partial x,-frac partial partial y,-frac partial partial zright)displaystyle partial ^a=left(frac partial _tc,-vec nabla right)=left(frac 1cfrac partial partial t,-frac partial partial x,-frac partial partial y,-frac partial partial zright)

4-velocity


Ua=γ(c,u→)=γ(c,dxdt,dydt,dzdt)displaystyle U^a=gamma left(c,vec uright)=gamma left(c,frac dxdt,frac dydt,frac dzdtright)displaystyle U^a=gamma left(c,vec uright)=gamma left(c,frac dxdt,frac dydt,frac dzdtright)
where Ua=dXadτdisplaystyle U^a=frac dX^adtau U^a=frac dX^adtau

4-momentum


Pa=(mc,p→)=(Ec,p→)=(Ec,px,py,pz)displaystyle P^a=left(mc,vec pright)=left(frac Ec,vec pright)=left(frac Ec,p_x,p_y,p_zright)displaystyle P^a=left(mc,vec pright)=left(frac Ec,vec pright)=left(frac Ec,p_x,p_y,p_zright)
where Pa=moUadisplaystyle P^a=m_oU^aP^a=m_oU^a

4-current


Ja=(cρ,j→)=(cρ,jx,jy,jz)displaystyle J^a=left(crho ,vec jright)=left(crho ,j_x,j_y,j_zright)displaystyle J^a=left(crho ,vec jright)=left(crho ,j_x,j_y,j_zright)
where Ja=ρoUadisplaystyle J^a=rho _oU^aJ^a=rho _oU^a

4-potential

Aa=(ϕ/c,A→)=(ϕ/c,Ax,Ay,Az)displaystyle A^a=left(phi /c,vec Aright)=left(phi /c,A_x,A_y,A_zright)displaystyle A^a=left(phi /c,vec Aright)=left(phi /c,A_x,A_y,A_zright)


Four-tensors


Kronecker delta

δba={1if a=b,0if a≠b.displaystyle delta _b^a=begincases1&mboxif a=b,\0&mboxif aneq b.endcasesdelta _b^a=begincases1&mboxif a=b,\0&mboxif aneq b.endcases


Minkowski metric (the metric of flat space according to general relativity)

ηab=ηab={1if a=b=0,−1if a=b=1,2,3,0if a≠b.displaystyle eta _ab=eta ^ab=begincases1&mboxif a=b=0,\-1&mboxif a=b=1,2,3,\0&mboxif aneq b.endcaseseta _ab=eta ^ab=begincases1&mboxif a=b=0,\-1&mboxif a=b=1,2,3,\0&mboxif aneq b.endcases

Levi-Civita symbol

ϵabcd=−ϵabcd={+1if abcd is an even permutation of 0123,−1if abcd is an odd permutation of 0123,0otherwise.displaystyle epsilon _abcd=-epsilon ^abcd=begincases+1&mboxif abcdmbox is an even permutation of 0123,\-1&mboxif abcdmbox is an odd permutation of 0123,\0&mboxotherwise.endcasesepsilon _abcd=-epsilon ^abcd=begincases+1&mboxif abcdmbox is an even permutation of 0123,\-1&mboxif abcdmbox is an odd permutation of 0123,\0&mboxotherwise.endcases


Electromagnetic field tensor (using a metric signature of + − − − )

Fab=[01cEx1cEy1cEz−1cEx0−BzBy−1cEyBz0−Bx−1cEz−ByBx0]displaystyle F_ab=beginbmatrix0&frac 1cE_x&frac 1cE_y&frac 1cE_z\-frac 1cE_x&0&-B_z&B_y\-frac 1cE_y&B_z&0&-B_x\-frac 1cE_z&-B_y&B_x&0endbmatrixdisplaystyle F_ab=beginbmatrix0&frac 1cE_x&frac 1cE_y&frac 1cE_z\-frac 1cE_x&0&-B_z&B_y\-frac 1cE_y&B_z&0&-B_x\-frac 1cE_z&-B_y&B_x&0endbmatrix


Dual electromagnetic field tensor

Gcd=12ϵabcdFab=[0BxByBz−Bx01cEz−1cEy−By−1cEz01cEx−Bz1cEy−1cEx0]displaystyle G_cd=frac 12epsilon _abcdF^ab=beginbmatrix0&B_x&B_y&B_z\-B_x&0&frac 1cE_z&-frac 1cE_y\-B_y&-frac 1cE_z&0&frac 1cE_x\-B_z&frac 1cE_y&-frac 1cE_x&0endbmatrixdisplaystyle G_cd=frac 12epsilon _abcdF^ab=beginbmatrix0&B_x&B_y&B_z\-B_x&0&frac 1cE_z&-frac 1cE_y\-B_y&-frac 1cE_z&0&frac 1cE_x\-B_z&frac 1cE_y&-frac 1cE_x&0endbmatrix


Lorentz violating models



In standard field theory, there are very strict and severe constraints on marginal and relevant Lorentz violating operators within both QED and the Standard Model. Irrelevant Lorentz violating operators may be suppressed by a high cutoff scale, but they typically induce marginal and relevant Lorentz violating operators via radiative corrections. So, we also have very strict and severe constraints on irrelevant Lorentz violating operators.


Since some approaches to quantum gravity lead to violations of Lorentz invariance,[2] these studies are part of Phenomenological Quantum Gravity. Lorentz violations are allowed in string theory, supersymmetry and Horava-Lifshitz gravity.[3]


Lorentz violating models typically fall into four classes:[citation needed]


  • The laws of physics are exactly Lorentz covariant but this symmetry is spontaneously broken. In special relativistic theories, this leads to phonons, which are the Goldstone bosons. The phonons travel at less than the speed of light.

  • Similar to the approximate Lorentz symmetry of phonons in a lattice (where the speed of sound plays the role of the critical speed), the Lorentz symmetry of special relativity (with the speed of light as the critical speed in vacuum) is only a low-energy limit of the laws of physics, which involve new phenomena at some fundamental scale. Bare conventional "elementary" particles are not point-like field-theoretical objects at very small distance scales, and a nonzero fundamental length must be taken into account. Lorentz symmetry violation is governed by an energy-dependent parameter which tends to zero as momentum decreases.[4] Such patterns require the existence of a privileged local inertial frame (the "vacuum rest frame"). They can be tested, at least partially, by ultra-high energy cosmic ray experiments like the Pierre Auger Observatory.[5]

  • The laws of physics are symmetric under a deformation of the Lorentz or more generally, the Poincaré group, and this deformed symmetry is exact and unbroken. This deformed symmetry is also typically a quantum group symmetry, which is a generalization of a group symmetry. Deformed special relativity is an example of this class of models. The deformation is scale dependent, meaning that at length scales much larger than the Planck scale, the symmetry looks pretty much like the Poincaré group. Ultra-high energy cosmic ray experiments cannot test such models.


  • Very special relativity forms a class of its own; if charge-parity (CP) is an exact symmetry, a subgroup of the Lorentz group is sufficient to give us all the standard predictions. This is, however, not the case.

Models belonging to the first two classes can be consistent with experiment if Lorentz breaking happens at Planck scale or beyond it, or even before it in suitable preonic models,[6] and if Lorentz symmetry violation is governed by a suitable energy-dependent parameter. One then has a class of models which deviate from Poincaré symmetry near the Planck scale but still flows towards an exact Poincaré group at very large length scales. This is also true for the third class, which is furthermore protected from radiative corrections as one still has an exact (quantum) symmetry.


Even though there is no evidence of the violation of Lorentz invariance, several experimental searches for such violations have been performed during recent years. A detailed summary of the results of these searches is given in the Data Tables for Lorentz and CPT Violation.[7]


Lorentz invariance is also violated in QFT assuming non-zero temperature.[8][9][10]


There is also growing evidence of Lorentz violation in Weyl semimetals and Dirac semimetals.[11][12][13][14][15]



See also


  • 4-vector

  • Antimatter tests of Lorentz violation

  • Fock–Lorentz symmetry

  • General covariance

  • Lorentz invariance in loop quantum gravity

  • Lorentz-violating electrodynamics

  • Lorentz-violating neutrino oscillations

  • Symmetry in physics


Notes




  1. ^ "Framing Lorentz symmetry". CERN Courier. 2004-11-24. Retrieved 2013-05-26..mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ Mattingly, David (2005). "Modern Tests of Lorentz Invariance". Living Reviews in Relativity. 8 (1): 5. arXiv:gr-qc/0502097. Bibcode:2005LRR.....8....5M. doi:10.12942/lrr-2005-5. PMC 5253993. PMID 28163649.


  3. ^ Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube


  4. ^ Luis Gonzalez-Mestres (1995-05-25). "Properties of a possible class of particles able to travel faster than light". Dark Matter in Cosmology: 645. arXiv:astro-ph/9505117. Bibcode:1995dmcc.conf..645G.


  5. ^ Luis Gonzalez-Mestres (1997-05-26). "Absence of Greisen-Zatsepin-Kuzmin Cutoff and Stability of Unstable Particles at Very High Energy, as a Consequence of Lorentz Symmetry Violation". Proceedings of the 25th International Cosmic Ray Conference (held 30 July - 6 August. 6: 113. arXiv:physics/9705031. Bibcode:1997ICRC....6..113G.


  6. ^ Luis Gonzalez-Mestres (2014). "Ultra-high energy physics and standard basic principles. Do Planck units really make sense?" (PDF). EPJ Web of Conferences. EPJ Web of Conferences (ICNFP 2013 Conference). 71: 00062. Bibcode:2014EPJWC..7100062G. doi:10.1051/epjconf/20147100062.


  7. ^
    Kostelecky, V.A.; Russell, N. (2010). "Data Tables for Lorentz and CPT Violation". arXiv:0801.0287v3.



  8. ^ Laine, Mikko; Vuorinen, Aleksi (2016). "Basics of Thermal Field Theory". Lecture Notes in Physics. arXiv:1701.01554. doi:10.1007/978-3-319-31933-9. ISSN 0075-8450.


  9. ^ Ojima, Izumi (January 1986). "Lorentz invariance vs. temperature in QFT". Letters in Mathematical Physics. 11 (1): 73–80. Bibcode:1986LMaPh..11...73O. doi:10.1007/bf00417467. ISSN 0377-9017.


  10. ^ "Proof of Loss of Lorentz Invariance in Finite Temperature Quantum Field Theory". Physics Stack Exchange. Retrieved 2018-06-18.


  11. ^ Sanchez, Daniel S., et al. "Discovery of Lorentz-violating type-II Weyl fermions in LaAlGe." Bulletin of the American Physical Society 62 (2017).


  12. ^ Yan, Mingzhe, et al. "Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2." Nature Communications 8 (2017).


  13. ^ Deng, Ke, et al. "Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2." arXiv preprint arXiv:1603.08508 (2016).


  14. ^ Huang L, et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 2016;15:1155–1160. doi: 10.1038/nmat4685.


  15. ^ Belopolski, Ilya, et al. "Discovery of a new type of topological Weyl fermion semimetal state in MoxW1− xTe2." Nature communications 7 (2016).



References


  • Background information on Lorentz and CPT violation: http://www.physics.indiana.edu/~kostelec/faq.html


  • Mattingly, David (2005). "Modern Tests of Lorentz Invariance". Living Reviews in Relativity. 8 (1): 5. arXiv:gr-qc/0502097. Bibcode:2005LRR.....8....5M. doi:10.12942/lrr-2005-5. PMC 5253993. PMID 28163649.


  • Amelino-Camelia G, Ellis J, Mavromatos NE, Nanopoulos DV, Sarkar S (June 1998). "Tests of quantum gravity from observations of bold gamma-ray bursts". Nature. 393 (6687): 763–765. arXiv:astro-ph/9712103. Bibcode:1998Natur.393..763A. doi:10.1038/31647. Retrieved 2007-12-22.


  • Jacobson T, Liberati S, Mattingly D (August 2003). "A strong astrophysical constraint on the violation of special relativity by quantum gravity". Nature. 424 (6952): 1019–1021. arXiv:astro-ph/0212190. Bibcode:2003Natur.424.1019J. doi:10.1038/nature01882. PMID 12944959. Retrieved 2007-12-22.


  • Carroll S (August 2003). "Quantum gravity: An astrophysical constraint". Nature. 424 (6952): 1007–1008. Bibcode:2003Natur.424.1007C. doi:10.1038/4241007a. PMID 12944951. Retrieved 2007-12-22.


  • Jacobson, T.; Liberati, S.; Mattingly, D. (2003). "Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics". Physical Review D. 67 (12): 124011. arXiv:hep-ph/0209264. Bibcode:2003PhRvD..67l4011J. doi:10.1103/PhysRevD.67.124011.


這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

Museum of Modern and Contemporary Art of Trento and Rovereto