Order-5 120-cell honeycomb


























Order-5 120-cell honeycomb
(No image)
Type
Hyperbolic regular honeycomb
Schläfli symbol5,3,3,5
Coxeter diagram
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
4-faces
Schlegel wireframe 120-cell.png 5,3,3
Cells
Dodecahedron.png 5,3
Faces
Regular polygon 5 annotated.svg 5
Face figure
Regular polygon 5 annotated.svg 5
Edge figure
Icosahedron.svg 3,5
Vertex figure
Schlegel wireframe 600-cell vertex-centered.png 3,3,5
DualSelf-dual
Coxeter group
K4, [5,3,3,5]
PropertiesRegular

In the geometry of hyperbolic 4-space, the order-5 120-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol 5,3,3,5, it has five 120-cells around each face. It is self-dual.




Contents





  • 1 Related honeycombs


  • 2 Birectified order-5 120-cell honeycomb


  • 3 See also


  • 4 References




Related honeycombs


It is related to the (order-3) 120-cell honeycomb, and order-4 120-cell honeycomb. It is analogous to the order-5 dodecahedral honeycomb and order-5 pentagonal tiling.



Birectified order-5 120-cell honeycomb


The birectified order-5 120-cell honeycomb CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png constructed by all rectified 600-cells, with octahedron and icosahedron cells, and triangle faces with a 5-5 duoprism vertex figure and has extended symmetry [[5,3,3,5]].



See also


  • List of regular polytopes


References



  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. .mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
    ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)


  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999
    ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II,III,IV,V, p212-213)


這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

Node.js Script on GitHub Pages or Amazon S3

Museum of Modern and Contemporary Art of Trento and Rovereto