Coxeter group


In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced (Coxeter 1934) as abstractions of reflection groups, and finite Coxeter groups were classified in 1935 (Coxeter 1935).


Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional Kac–Moody algebras.


Standard references include (Humphreys 1992) and (Davis 2007).




Contents





  • 1 Definition

    • 1.1 Coxeter matrix and Schläfli matrix



  • 2 An example


  • 3 Connection with reflection groups


  • 4 Finite Coxeter groups

    • 4.1 Classification


    • 4.2 Weyl groups


    • 4.3 Properties


    • 4.4 Symmetry groups of regular polytopes



  • 5 Affine Coxeter groups


  • 6 Hyperbolic Coxeter groups


  • 7 Partial orders


  • 8 Homology


  • 9 See also


  • 10 References


  • 11 Further reading


  • 12 External links




Definition


Formally, a Coxeter group can be defined as a group with the presentation


⟨r1,r2,…,rn∣(rirj)mij=1⟩displaystyle leftlangle r_1,r_2,ldots ,r_nmid (r_ir_j)^m_ij=1rightrangle leftlangle r_1,r_2,ldots ,r_nmid (r_ir_j)^m_ij=1rightrangle

where mii=1displaystyle m_ii=1m_ii=1 and mij≥2displaystyle m_ijgeq 2m_ijgeq 2 for i≠jdisplaystyle ineq jineq j.
The condition mij=∞displaystyle m_ij=infty displaystyle m_ij=infty means no relation of the form (rirj)mdisplaystyle (r_ir_j)^mdisplaystyle (r_ir_j)^m should be imposed.


The pair (W,S)displaystyle (W,S)(W,S) where Wdisplaystyle WW is a Coxeter group with generators S=r1,…,rndisplaystyle S=r_1,dots ,r_ndisplaystyle S=r_1,dots ,r_n is called a Coxeter system. Note that in general Sdisplaystyle SS is not uniquely determined by Wdisplaystyle WW. For example, the Coxeter groups of type B3displaystyle B_3B_3 and A1×A3displaystyle A_1times A_3displaystyle A_1times A_3 are isomorphic but the Coxeter systems are not equivalent (see below for an explanation of this notation).


A number of conclusions can be drawn immediately from the above definition.


  • The relation mii=1displaystyle m_ii=1displaystyle m_ii=1 means that (riri)1=(ri)2=1displaystyle (r_ir_i)^1=(r_i)^2=1displaystyle (r_ir_i)^1=(r_i)^2=1 for all idisplaystyle ii ; as such the generators are involutions.

  • If mij=2displaystyle m_ij=2displaystyle m_ij=2, then the generators ridisplaystyle r_ir_i and rjdisplaystyle r_jr_j commute. This follows by observing that


xx=yy=1displaystyle xx=yy=1displaystyle xx=yy=1,

together with
xyxy=1displaystyle xyxy=1displaystyle xyxy=1

implies that

xy=x(xyxy)y=(xx)yx(yy)=yxdisplaystyle xy=x(xyxy)y=(xx)yx(yy)=yxdisplaystyle xy=x(xyxy)y=(xx)yx(yy)=yx.

Alternatively, since the generators are involutions, ri=ri−1displaystyle r_i=r_i^-1r_i=r_i^-1, so (rirj)2=rirjrirj=rirjri−1rj−1displaystyle (r_ir_j)^2=r_ir_jr_ir_j=r_ir_jr_i^-1r_j^-1(r_ir_j)^2=r_ir_jr_ir_j=r_ir_jr_i^-1r_j^-1, and thus is equal to the commutator.

  • In order to avoid redundancy among the relations, it is necessary to assume that mij=mjidisplaystyle m_ij=m_jim_ij=m_ji. This follows by observing that

yy=1displaystyle yy=1displaystyle yy=1,

together with
(xy)m=1displaystyle (xy)^m=1displaystyle (xy)^m=1

implies that

(yx)m=(yx)myy=y(xy)my=yy=1displaystyle (yx)^m=(yx)^myy=y(xy)^my=yy=1displaystyle (yx)^m=(yx)^myy=y(xy)^my=yy=1.

Alternatively, (xy)kdisplaystyle (xy)^k(xy)^k and (yx)kdisplaystyle (yx)^k(yx)^k are conjugate elements, as y(xy)ky−1=(yx)kyy−1=(yx)kdisplaystyle y(xy)^ky^-1=(yx)^kyy^-1=(yx)^ky(xy)^ky^-1=(yx)^kyy^-1=(yx)^k.


Coxeter matrix and Schläfli matrix


The Coxeter matrix is the n×ndisplaystyle ntimes nntimes n, symmetric matrix with entries mijdisplaystyle m_ijm_ij. Indeed, every symmetric matrix with diagonal entries exclusively 1 and nondiagonal entries in the set 2,3,…∪∞displaystyle 2,3,ldots cup infty displaystyle 2,3,ldots cup infty is a Coxeter matrix.


The Coxeter matrix can be conveniently encoded by a Coxeter diagram, as per the following rules.


  • The vertices of the graph are labelled by generator subscripts.

  • Vertices idisplaystyle ii and jdisplaystyle jj are adjacent if and only if mij≥3displaystyle m_ijgeq 3displaystyle m_ijgeq 3.

  • An edge is labelled with the value of mijdisplaystyle m_ijm_ij whenever the value is 4displaystyle 44 or greater.

In particular, two generators commute if and only if they are not connected by an edge.
Furthermore, if a Coxeter graph has two or more connected components, the associated group is the direct product of the groups associated to the individual components.
Thus the disjoint union of Coxeter graphs yields a direct product of Coxeter groups.


The Coxeter matrix, Mijdisplaystyle M_ijM_ij, is related to the n×ndisplaystyle ntimes nntimes n Schläfli matrix Cdisplaystyle CC with entries Cij=−2cos⁡(π/Mij)displaystyle C_ij=-2cos(pi /M_ij)displaystyle C_ij=-2cos(pi /M_ij), but the elements are modified, being proportional to the dot product of the pairwise generators. The Schläfli matrix is useful because its eigenvalues determine whether the Coxeter group is of finite type (all positive), affine type (all non-negative, at least one zero), or indefinite type (otherwise). The indefinite type is sometimes further subdivided, e.g. into hyperbolic and other Coxeter groups. However, there are multiple non-equivalent definitions for hyperbolic Coxeter groups.















































Examples
Coxeter group
A1×A1A2B2H2G2
I~1displaystyle tilde I_1tilde I_1
A3B3D4
A~3displaystyle tilde A_3tilde A_3

Coxeter diagram

CDel node.pngCDel 2.pngCDel node.png

CDel node.pngCDel 3.pngCDel node.png

CDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 5.pngCDel node.png

CDel node.pngCDel 6.pngCDel node.png

CDel node.pngCDel infin.pngCDel node.png

CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png
Coxeter matrix

[1221]displaystyle left[beginsmallmatrix1&2\2&1\endsmallmatrixright]left[beginsmallmatrix1&2\2&1\endsmallmatrixright]

[1331]displaystyle left[beginsmallmatrix1&3\3&1\endsmallmatrixright]left[beginsmallmatrix1&3\3&1\endsmallmatrixright]

[1441]displaystyle left[beginsmallmatrix1&4\4&1\endsmallmatrixright]displaystyle left[beginsmallmatrix1&4\4&1\endsmallmatrixright]

[1551]displaystyle left[beginsmallmatrix1&5\5&1\endsmallmatrixright]displaystyle left[beginsmallmatrix1&5\5&1\endsmallmatrixright]

[1661]displaystyle left[beginsmallmatrix1&6\6&1\endsmallmatrixright]displaystyle left[beginsmallmatrix1&6\6&1\endsmallmatrixright]

[1∞∞1]displaystyle left[beginsmallmatrix1&infty \infty &1\endsmallmatrixright]left[beginsmallmatrix1&infty \infty &1\endsmallmatrixright]

[132313231]displaystyle left[beginsmallmatrix1&3&2\3&1&3\2&3&1endsmallmatrixright]left[beginsmallmatrix1&3&2\3&1&3\2&3&1endsmallmatrixright]

[142413231]displaystyle left[beginsmallmatrix1&4&2\4&1&3\2&3&1endsmallmatrixright]left[beginsmallmatrix1&4&2\4&1&3\2&3&1endsmallmatrixright]

[1322313323122321]displaystyle left[beginsmallmatrix1&3&2&2\3&1&3&3\2&3&1&2\2&3&2&1endsmallmatrixright]left[beginsmallmatrix1&3&2&2\3&1&3&3\2&3&1&2\2&3&2&1endsmallmatrixright]

[1323313223133231]displaystyle left[beginsmallmatrix1&3&2&3\3&1&3&2\2&3&1&3\3&2&3&1endsmallmatrixright]left[beginsmallmatrix1&3&2&3\3&1&3&2\2&3&1&3\3&2&3&1endsmallmatrixright]

Schläfli matrix

[2002]displaystyle left[beginsmallmatrix2&0\0&2endsmallmatrixright]left[beginsmallmatrix2&0\0&2endsmallmatrixright]

[ 2−1−1 2]displaystyle left[beginsmallmatrix ,2&-1\-1& ,2endsmallmatrixright]displaystyle left[beginsmallmatrix ,2&-1\-1& ,2endsmallmatrixright]

[ 2−2−2 2]displaystyle left[beginsmallmatrix ,2&-sqrt 2\-sqrt 2& ,2endsmallmatrixright]displaystyle left[beginsmallmatrix ,2&-sqrt 2\-sqrt 2& ,2endsmallmatrixright]

[ 2−ϕ−ϕ 2]displaystyle left[beginsmallmatrix ,2&-phi \-phi & ,2endsmallmatrixright]displaystyle left[beginsmallmatrix ,2&-phi \-phi & ,2endsmallmatrixright]

[ 2−3−3 2]displaystyle left[beginsmallmatrix ,2&-sqrt 3\-sqrt 3& ,2endsmallmatrixright]displaystyle left[beginsmallmatrix ,2&-sqrt 3\-sqrt 3& ,2endsmallmatrixright]

[ 2−2−2 2]displaystyle left[beginsmallmatrix ,2&-2\-2& ,2endsmallmatrixright]displaystyle left[beginsmallmatrix ,2&-2\-2& ,2endsmallmatrixright]

[ 2−1 0−1 2−1 0−1 2]displaystyle left[beginsmallmatrix ,2&-1& ,0\-1& ,2&-1\ ,0&-1& ,2endsmallmatrixright]displaystyle left[beginsmallmatrix ,2&-1& ,0\-1& ,2&-1\ ,0&-1& ,2endsmallmatrixright]

[   2−2 0−2   2−1   0 −1 2]displaystyle left[beginsmallmatrix , 2&-sqrt 2& ,0\-sqrt 2& , 2&-1\ , 0& ,-1& ,2endsmallmatrixright]displaystyle left[beginsmallmatrix , 2&-sqrt 2& ,0\-sqrt 2& , 2&-1\ , 0& ,-1& ,2endsmallmatrixright]

[ 2−1 0 0−1 2−1−1 0−1 2 0 0−1 0 2]displaystyle left[beginsmallmatrix ,2&-1& ,0& ,0\-1& ,2&-1&-1\ ,0&-1& ,2& ,0\ ,0&-1& ,0& ,2endsmallmatrixright]displaystyle left[beginsmallmatrix ,2&-1& ,0& ,0\-1& ,2&-1&-1\ ,0&-1& ,2& ,0\ ,0&-1& ,0& ,2endsmallmatrixright]

[ 2−1 0−1−1 2−1 0 0−1 2−1−1 0−1 2]displaystyle left[beginsmallmatrix ,2&-1& ,0&-1\-1& ,2&-1& ,0\ ,0&-1& ,2&-1\-1& ,0&-1& ,2endsmallmatrixright]displaystyle left[beginsmallmatrix ,2&-1& ,0&-1\-1& ,2&-1& ,0\ ,0&-1& ,2&-1\-1& ,0&-1& ,2endsmallmatrixright]


An example


The graph Andisplaystyle A_nA_n in which vertices 1 through n are placed in a row with each vertex connected by an unlabelled edge to its immediate neighbors gives rise to the symmetric group Sn+1; the generators correspond to the transpositions (1 2), (2 3), ... , (n n+1). Two non-consecutive transpositions always commute, while (k k+1) (k+1 k+2) gives the 3-cycle (k k+2 k+1). Of course, this only shows that Sn+1 is a quotient group of the Coxeter group described by the graph, but it is not too difficult to check that equality holds.



Connection with reflection groups



Coxeter groups are deeply connected with reflection groups. Simply put, Coxeter groups are abstract groups (given via a presentation), while reflection groups are concrete groups (given as subgroups of linear groups or various generalizations). Coxeter groups grew out of the study of reflection groups — they are an abstraction: a reflection group is a subgroup of a linear group generated by reflections (which have order 2), while a Coxeter group is an abstract group generated by involutions (elements of order 2, abstracting from reflections), and whose relations have a certain form ((rirj)kdisplaystyle (r_ir_j)^k(r_ir_j)^k, corresponding to hyperplanes meeting at an angle of π/kdisplaystyle pi /kpi /k, with rirjdisplaystyle r_ir_jr_ir_j being of order k abstracting from a rotation by 2π/kdisplaystyle 2pi /k2pi /k).


The abstract group of a reflection group is a Coxeter group, while conversely a reflection group can be seen as a linear representation of a Coxeter group. For finite reflection groups, this yields an exact correspondence: every finite Coxeter group admits a faithful representation as a finite reflection group of some Euclidean space. For infinite Coxeter groups, however, a Coxeter group may not admit a representation as a reflection group.


Historically, (Coxeter 1934) proved that every reflection group is a Coxeter group (i.e., has a presentation where all relations are of the form ri2displaystyle r_i^2r_i^2 or (rirj)kdisplaystyle (r_ir_j)^k(r_ir_j)^k), and indeed this paper introduced the notion of a Coxeter group, while (Coxeter 1935) proved that every finite Coxeter group had a representation as a reflection group, and classified finite Coxeter groups.



Finite Coxeter groups




Coxeter graphs of the finite Coxeter groups.



Classification


The finite Coxeter groups were classified in (Coxeter 1935), in terms of Coxeter–Dynkin diagrams; they are all represented by reflection groups of finite-dimensional Euclidean spaces.


The finite Coxeter groups consist of three one-parameter families of increasing rank An,Bn,Dn,displaystyle A_n,B_n,D_n,A_n,B_n,D_n, one one-parameter family of dimension two, I2(p),displaystyle I_2(p),I_2(p), and six exceptional groups: E6,E7,E8,F4,H3,displaystyle E_6,E_7,E_8,F_4,H_3,E_6,E_7,E_8,F_4,H_3, and H4.displaystyle H_4.H_4.



Weyl groups



Many, but not all of these, are Weyl groups, and every Weyl group can be realized as a Coxeter group. The Weyl groups are the families An,Bn,displaystyle A_n,B_n,A_n,B_n, and Dn,displaystyle D_n,D_n, and the exceptions E6,E7,E8,F4,displaystyle E_6,E_7,E_8,F_4,E_6,E_7,E_8,F_4, and I2(6),displaystyle I_2(6),I_2(6), denoted in Weyl group notation as G2.displaystyle G_2.G_2. The non-Weyl groups are the exceptions H3displaystyle H_3H_3 and H4,displaystyle H_4,H_4, and the family I2(p)displaystyle I_2(p)I_2(p) except where this coincides with one of the Weyl groups (namely I2(3)≅A2,I2(4)≅B2,displaystyle I_2(3)cong A_2,I_2(4)cong B_2,I_2(3)cong A_2,I_2(4)cong B_2, and I2(6)≅G2displaystyle I_2(6)cong G_2I_2(6)cong G_2).


This can be proven by comparing the restrictions on (undirected) Dynkin diagrams with the restrictions on Coxeter diagrams of finite groups: formally, the Coxeter graph can be obtained from the Dynkin diagram by discarding the direction of the edges, and replacing every double edge with an edge labelled 4 and every triple edge by an edge labelled 6. Also note that every finitely generated Coxeter group is an automatic group.[1] Dynkin diagrams have the additional restriction that the only permitted edge labels are 2, 3, 4, and 6, which yields the above. Geometrically, this corresponds to the crystallographic restriction theorem, and the fact that excluded polytopes do not fill space or tile the plane – for H3,displaystyle H_3,H_3, the dodecahedron (dually, icosahedron) does not fill space; for H4,displaystyle H_4,H_4, the 120-cell (dually, 600-cell) does not fill space; for I2(p)displaystyle I_2(p)I_2(p) a p-gon does not tile the plane except for p=3,4,displaystyle p=3,4,p=3,4, or 6displaystyle 66 (the triangular, square, and hexagonal tilings, respectively).


Note further that the (directed) Dynkin diagrams Bn and Cn give rise to the same Weyl group (hence Coxeter group), because they differ as directed graphs, but agree as undirected graphs – direction matters for root systems but not for the Weyl group; this corresponds to the hypercube and cross-polytope being different regular polytopes but having the same symmetry group.



Properties


Some properties of the finite irreducible Coxeter groups are given in the following table. The order of reducible groups can be computed by the product of their irreducible subgroup orders.











































































































































































































































































































Rank
n
Group
symbol
Alternate
symbol
Bracket
notation
Coxeter
graph
Reflections
m = nh/2[2]

Coxeter number
h
OrderRelated polytopes
1
A1

A1
[ ]CDel node.png122
2
A2

A2
[3]CDel node.pngCDel 3.pngCDel node.png336
3
3
A3

A3
[3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png6424
3,3
4
A4

A4
[3,3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png105120
3,3,3
5
A5

A5
[3,3,3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png156720
3,3,3,3
6
A6

A6
[3,3,3,3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png2175040
3,3,3,3,3
7
A7

A7
[3,3,3,3,3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png28840320
3,3,3,3,3,3
8
A8

A8
[3,3,3,3,3,3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png369362880
3,3,3,3,3,3,3
n
An

An
[3n−1]
CDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png

n(n + 1)/2

n + 1
(n + 1)!
n-simplex
2
B2

C2
[4]CDel node.pngCDel 4.pngCDel node.png448
4
3
B3

C3
[4,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png9648
4,3 / 3,4
4
B4

C4
[4,3,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png168384-4,3,3 / 3,3,4
5
B5

C5
[4,3,3,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png25103840
4,3,3,3 / 3,3,3,4
6
B6

C6
[4,3,3,3,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png361246080
4,3,3,3,3 / 3,3,3,3,4
7
B7

C7
[4,3,3,3,3,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png4914645120
4,3,3,3,3,3 / 3,3,3,3,3,4
8
B8

C8
[4,3,3,3,3,3,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png641610321920
4,3,3,3,3,3 / 3,3,3,3,3,4
n
Bn

Cn
[4,3n−2]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png

n2
2n
2nn!
n-cube / n-orthoplex
4
D4

B4
[31,1,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png126192
h4,3,3 / 3,31,1
5
D5

B5
[32,1,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png2081920
h4,3,3,3 / 3,3,31,1
6
D6

B6
[33,1,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png301023040
h4,3,3,3,3 / 3,3,3,31,1
7
D7

B7
[34,1,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png4212322560
h4,3,3,3,3,3 / 3,3,3,3,31,1
8
D8

B8
[35,1,1]CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png56145160960
h4,3,3,3,3,3,3 / 3,3,3,3,3,31,1
n
Dn

Bn
[3n−3,1,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png

n(n − 1)
2(n − 1)2n−1n!
n-demicube / n-orthoplex
6
E6

E6
[32,2,1]CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png361251840 (72x6!)
221, 122
7
E7

E7
[33,2,1]CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png63182903040 (72x8!)
321, 231, 132
8
E8

E8
[34,2,1]CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png12030696729600 (192x10!)
421, 241, 142
4
F4

F4
[3,4,3]CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png24121152
3,4,3
2
G2
[6]CDel node.pngCDel 6.pngCDel node.png6612
6
2
H2

G2
[5]CDel node.pngCDel 5.pngCDel node.png5510
5
3
H3

G3
[3,5]CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png1510120
3,5 / 5,3
4
H4

G4
[3,3,5]CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png603014400
5,3,3 / 3,3,5
2
I2(p)

Dp
2

[p]CDel node.pngCDel p.pngCDel node.pngpp2p

p


Symmetry groups of regular polytopes


All symmetry groups of regular polytopes are finite Coxeter groups. Note that dual polytopes have the same symmetry group.


There are three series of regular polytopes in all dimensions. The symmetry group of a regular n-simplex is the symmetric group Sn+1, also known as the Coxeter group of type An. The symmetry group of the n-cube and its dual, the n-cross-polytope, is Bn, and is known as the hyperoctahedral group.


The exceptional regular polytopes in dimensions two, three, and four, correspond to other Coxeter groups. In two dimensions, the dihedral groups, which are the symmetry groups of regular polygons, form the series I2(p). In three dimensions, the symmetry group of the regular dodecahedron and its dual, the regular icosahedron, is H3, known as the full icosahedral group. In four dimensions, there are three special regular polytopes, the 24-cell, the 120-cell, and the 600-cell. The first has symmetry group F4, while the other two are dual and have symmetry group H4.


The Coxeter groups of type Dn, E6, E7, and E8 are the symmetry groups of certain semiregular polytopes.


























































































Table of irreducible polytope families
Family
n
n-simplex
n-hypercube
n-orthoplex
n-demicube

1k2

2k1

k21

pentagonal polytope

Group
AnBn


I2(p)
Dn






E6E7E8F4G2
Hn

2

2-simplex t0.svg
CDel node 1.pngCDel 3.pngCDel node.png

Triangle



2-cube.svg
CDel node 1.pngCDel 4.pngCDel node.png

Square



Regular polygon 7.svg
CDel node 1.pngCDel p.pngCDel node.png
p-gon
(example: p=7)

Regular polygon 6.svg
CDel node 1.pngCDel 6.pngCDel node.png
Hexagon

Regular polygon 5.svg
CDel node 1.pngCDel 5.pngCDel node.png
Pentagon

3

3-simplex t0.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Tetrahedron

3-cube t0.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Cube

3-cube t2.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron

3-demicube.svg
CDel nodea 1.pngCDel 3a.pngCDel branch.png
Tetrahedron
 

Dodecahedron H3 projection.svg
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Dodecahedron

Icosahedron H3 projection.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Icosahedron

4

4-simplex t0.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cell

4-cube t0.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Tesseract



4-cube t3.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
16-cell

4-demicube t0 D4.svg
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png

Demitesseract



24-cell t0 F4.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
24-cell

120-cell graph H4.svg
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
120-cell

600-cell graph H4.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
600-cell

5

5-simplex t0.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex

5-cube graph.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube

5-orthoplex.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-orthoplex

5-demicube.svg
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
5-demicube
 
 


6

6-simplex t0.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-simplex

6-cube graph.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-cube

6-orthoplex.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6-orthoplex

6-demicube.svg
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
6-demicube

Up 1 22 t0 E6.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
122

E6 graph.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
221
 


7

7-simplex t0.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex

7-cube graph.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-cube

7-orthoplex.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7-orthoplex

7-demicube.svg
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-demicube

Gosset 1 32 petrie.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
132

Gosset 2 31 polytope.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
231

E7 graph.svg
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
321
 


8

8-simplex t0.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
8-simplex

8-cube.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
8-cube

8-orthoplex.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
8-orthoplex

8-demicube.svg
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
8-demicube

Gosset 1 42 polytope petrie.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
142

2 41 polytope petrie.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
241

Gosset 4 21 polytope petrie.svg
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
421
 


9

9-simplex t0.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
9-simplex

9-cube.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
9-cube

9-orthoplex.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
9-orthoplex

9-demicube.svg
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
9-demicube
 

10

10-simplex t0.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
10-simplex

10-cube.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
10-cube

10-orthoplex.svg
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
10-orthoplex

10-demicube.svg
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
10-demicube
 




Affine Coxeter groups




Coxeter diagrams for the Affine Coxeter groups




Stiefel diagram for the G2displaystyle G_2G_2 root system



The affine Coxeter groups form a second important series of Coxeter groups. These are not finite themselves, but each contains a normal abelian subgroup such that the corresponding quotient group is finite. In each case, the quotient group is itself a Coxeter group, and the Coxeter graph of the affine Coxeter group is obtained from the Coxeter graph of the quotient group by adding another vertex and one or two additional edges. For example, for n ≥ 2, the graph consisting of n+1 vertices in a circle is obtained from An in this way, and the corresponding Coxeter group is the affine Weyl group of An. For n = 2, this can be pictured as a subgroup of the symmetry group of the standard tiling of the plane by equilateral triangles.


In general, given a root system, one can construct the associated Stiefel diagram, consisting of the hyperplanes orthogonal to the roots along with certain translates of these hyperplanes. The affine Coxeter group (or affine Weyl group) is then the group generated by the (affine) reflections about all the hyperplanes in the diagram.[3] The Stiefel diagram divides the plane into infinitely many connected components called alcoves, and the affine Coxeter group acts freely and transitively on the alcoves, just as the ordinary Weyl group acts freely and transitively on the Weyl chambers. The figure at right illustrates the Stiefel diagram for the G2displaystyle G_2G_2 root system.


Suppose Rdisplaystyle RR is an irreducible root system of rank r>1displaystyle r>1r>1 and let α1,…,αrdisplaystyle alpha _1,ldots ,alpha _rdisplaystyle alpha _1,ldots ,alpha _r be a collection of simple roots. Let, also, αr+1displaystyle alpha _r+1displaystyle alpha _r+1 denote the highest root. Then the affine Coxeter group is generated by the ordinary (linear) reflections about the hyperplanes perpendicular to α1,…,αrdisplaystyle alpha _1,ldots ,alpha _rdisplaystyle alpha _1,ldots ,alpha _r, together with an affine reflection about a translate of the hyperplane perpendicular to αr+1displaystyle alpha _r+1displaystyle alpha _r+1. The Coxeter graph for the affine Weyl group is the Coxeter–Dynkin diagram for Rdisplaystyle RR, together with one additional node associated to αr+1displaystyle alpha _r+1displaystyle alpha _r+1. In this case, one alcove of the Stiefel diagram may be obtained by taking the fundamental Weyl chamber and cutting it by a translate of the hyperplane perpendicular to αr+1displaystyle alpha _r+1displaystyle alpha _r+1.[4]


A list of the affine Coxeter groups follows:

























































Group
symbol

Witt
symbol
Bracket notationCoxeter
graph
Related uniform tessellation(s)

A~ndisplaystyle tilde A_ntilde A_n
Pn+1displaystyle P_n+1P_n+1[3[n]]
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.png...CDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
or
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.png...CDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

Simplectic honeycomb

B~ndisplaystyle tilde B_ntilde B_n
Sn+1displaystyle S_n+1S_n+1[4,3n−3,31,1]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

Demihypercubic honeycomb

C~ndisplaystyle tilde C_ntilde C_n
Rn+1displaystyle R_n+1R_n+1[4,3n−2,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 4.pngCDel node.png

Hypercubic honeycomb

D~ndisplaystyle tilde D_ntilde D_n
Qn+1displaystyle Q_n+1displaystyle Q_n+1[ 31,1,3n−4,31,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

Demihypercubic honeycomb

E~6displaystyle tilde E_6tilde E_6
T7displaystyle T_7displaystyle T_7[32,2,2]
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png or CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

222

E~7displaystyle tilde E_7tilde E_7
T8displaystyle T_8displaystyle T_8[33,3,1]
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png or CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

331, 133

E~8displaystyle tilde E_8tilde E_8
T9displaystyle T_9displaystyle T_9[35,2,1]CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
521, 251, 152

F~4displaystyle tilde F_4tilde F_4
U5displaystyle U_5displaystyle U_5[3,4,3,3]CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
16-cell honeycomb
24-cell honeycomb

G~2displaystyle tilde G_2tilde G_2
V3displaystyle V_3displaystyle V_3[6,3]CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Hexagonal tiling and
Triangular tiling

I~1displaystyle tilde I_1tilde I_1
W2displaystyle W_2displaystyle W_2[∞]CDel node.pngCDel infin.pngCDel node.png
apeirogon

The group symbol subscript is one less than the number of nodes in each case, since each of these groups was obtained by adding a node to a finite group's graph.



Hyperbolic Coxeter groups


There are infinitely many hyperbolic Coxeter groups describing reflection groups in hyperbolic space, notably including the hyperbolic triangle groups.



Partial orders


A choice of reflection generators gives rise to a length function l on a Coxeter group, namely the minimum number of uses of generators required to express a group element; this is precisely the length in the word metric in the Cayley graph. An expression for v using l(v) generators is a reduced word. For example, the permutation (13) in S3 has two reduced words, (12)(23)(12) and (23)(12)(23). The function v→(−1)l(v)displaystyle vto (-1)^l(v)vto (-1)^l(v) defines a map G→±1,displaystyle Gto pm 1,Gto pm 1, generalizing the sign map for the symmetric group.


Using reduced words one may define three partial orders on the Coxeter group, the (right) weak order, the absolute order and the Bruhat order (named for François Bruhat). An element v exceeds an element u in the Bruhat order if some (or equivalently, any) reduced word for v contains a reduced word for u as a substring, where some letters (in any position) are dropped. In the weak order, v ≥ u if some reduced word for v contains a reduced word for u as an initial segment. Indeed, the word length makes this into a graded poset. The Hasse diagrams corresponding to these orders are objects of study, and are related to the Cayley graph determined by the generators. The absolute order is defined analogously to the weak order, but with generating set/alphabet consisting of all conjugates of the Coxeter generators.


For example, the permutation (1 2 3) in S3 has only one reduced word, (12)(23), so covers (12) and (23) in the Bruhat order but only covers (12) in the weak order.



Homology


Since a Coxeter group Wdisplaystyle WW is generated by finitely many elements of order 2, its abelianization is an elementary abelian 2-group, i.e., it is isomorphic to the direct sum of several copies of the cyclic group Z2displaystyle Z_2Z_2. This may be restated in terms of the first homology group of Wdisplaystyle WW.


The Schur multiplier M(W)displaystyle M(W)displaystyle M(W), equal to the second homology group of Wdisplaystyle WW, was computed in (Ihara & Yokonuma 1965) for finite reflection groups and in (Yokonuma 1965) for affine reflection groups, with a more unified account given in (Howlett 1988). In all cases, the Schur multiplier is also an elementary abelian 2-group. For each infinite family Wndisplaystyle W_ndisplaystyle W_n of finite or affine Weyl groups, the rank of M(Wn)displaystyle M(W_n)displaystyle M(W_n) stabilizes as ndisplaystyle nn goes to infinity.



See also


  • Artin group

  • Triangle group

  • Coxeter element

  • Coxeter number

  • Complex reflection group

  • Chevalley–Shephard–Todd theorem

  • Coxeter–Dynkin diagram


  • Iwahori–Hecke algebra, a quantum deformation of the group algebra

  • Kazhdan–Lusztig polynomial

  • Longest element of a Coxeter group

  • Supersolvable arrangement


References




  1. ^ Brink, Brigitte; Howlett, RobertB. (1993), "A finiteness property and an automatic structure for Coxeter groups", Mathematische Annalen, 296 (1): 179–190, doi:10.1007/BF01445101, Zbl 0793.20036..mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ Coxeter, Regular polytopes, §12.6 The number of reflections, equation 12.61


  3. ^ Hall 2015 Section 13.6


  4. ^ Hall 2015 Chapter 13, Exercises 12 and 13




Further reading



  • Björner, Anders; Brenti, Francesco (2005), Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, 231, Springer, ISBN 978-3-540-27596-1, Zbl 1110.05001


  • Bourbaki, Nicolas (2002), Lie Groups and Lie Algebras: Chapters 4-6, Elements of Mathematics, Springer, ISBN 978-3-540-42650-9, Zbl 0983.17001


  • Coxeter, H. S. M. (1934), "Discrete groups generated by reflections", Annals of Mathematics, 35 (3): 588–621, doi:10.2307/1968753, JSTOR 1968753


  • Coxeter, H. S. M. (1935), "The complete enumeration of finite groups of the form ri2=(rirj)kij=1displaystyle r_i^2=(r_ir_j)^k_ij=1r_i^2=(r_ir_j)^k_ij=1", J. London Math. Soc., 1, 10 (1): 21–25, doi:10.1112/jlms/s1-10.37.21


  • Davis, Michael W. (2007), The Geometry and Topology of Coxeter Groups (PDF), ISBN 978-0-691-13138-2, Zbl 1142.20020


  • Grove, Larry C.; Benson, Clark T. (1985), Finite Reflection Groups, Graduate texts in mathematics, 99, Springer, ISBN 978-0-387-96082-1


  • Hall, Brian C. (2015), Lie groups, Lie algebras, and representations: An elementary introduction, Graduate Texts in Mathematics, 222 (2nd ed.), Springer, ISBN 978-3319134666


  • Humphreys, James E. (1992) [1990], Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, ISBN 978-0-521-43613-7, Zbl 0725.20028


  • Kane, Richard (2001), Reflection Groups and Invariant Theory, CMS Books in Mathematics, Springer, ISBN 978-0-387-98979-2, Zbl 0986.20038


  • Hiller, Howard (1982), Geometry of Coxeter groups, Research Notes in Mathematics, 54, Pitman, ISBN 978-0-273-08517-1, Zbl 0483.57002


  • Ihara, S.; Yokonuma, Takeo (1965), "On the second cohomology groups (Schur-multipliers) of finite reflection groups" (PDF), Jour. Fac. Sci. Univ. Tokyo, Sect. 1, 11: 155–171, Zbl 0136.28802, archived from the original (PDF) on 2013-10-23


  • Howlett, Robert B. (1988), "On the Schur Multipliers of Coxeter Groups", J. London Math. Soc., 2, 38 (2): 263–276, doi:10.1112/jlms/s2-38.2.263, Zbl 0627.20019


  • Vinberg, Ernest B. (1984), "Absence of crystallographic groups of reflections in Lobachevski spaces of large dimension", Trudy Moskov. Mat. Obshch., 47


  • Yokonuma, Takeo (1965), "On the second cohomology groups (Schur-multipliers) of infinite discrete reflection groups", Jour. Fac. Sci. Univ. Tokyo, Sect. 1, 11: 173–186, Zbl 0136.28803


External links



  • Hazewinkel, Michiel, ed. (2001) [1994], "Coxeter group", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4

  • Weisstein, Eric W. "Coxeter group". MathWorld.


  • Jenn software for visualizing the Cayley graphs of finite Coxeter groups on up to four generators


這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

Node.js Script on GitHub Pages or Amazon S3

Museum of Modern and Contemporary Art of Trento and Rovereto