Hexagonal tiling honeycomb






















Hexagonal tiling honeycomb

H3 633 FC boundary.png
Perspective projection view
within Poincaré disk model
Type
Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols6,3,3
t3,6,3
2t6,3,6
2t6,3[3]
t3[3,3]
Coxeter diagrams
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node h0.png
Cells
6,3 Uniform tiling 63-t0.png
Faces
Hexagon 6
Edge figure
Triangle 3
Vertex figure
Order-3 hexagonal tiling honeycomb verf.png
tetrahedron 3,3
Dual
3,3,6
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
Y¯3displaystyle bar Y_3bar Y_3, [3,6,3]
Z¯3displaystyle bar Z_3bar Z_3, [6,3,6]
VP¯3displaystyle bar VP_3bar VP_3, [6,3[3]]
PP¯3displaystyle bar PP_3bar PP_3, [3[3,3]]
PropertiesRegular

In the field of hyperbolic geometry, the hexagonal tiling honeycomb arises one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is called paracompact because it has infinite cells. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.


The Schläfli symbol of the hexagonal tiling honeycomb is 6,3,3. Since that of the hexagonal tiling of the plane is 6,3, this honeycomb has three such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the tetrahedron is 3,3, the vertex figure of this honeycomb is an tetrahedron. Thus, six hexagonal tilings meet at each vertex of this honeycomb, and four edges meet at each vertex.[1]




Contents





  • 1 Images


  • 2 Symmetry constructions


  • 3 Related polytopes and honeycombs

    • 3.1 Polytopes and honeycombs with tetrahedral vertex figures


    • 3.2 Polytopes and honeycombs with hexagonal tiling cells


    • 3.3 Rectified hexagonal tiling honeycomb


    • 3.4 Truncated hexagonal tiling honeycomb


    • 3.5 Bitruncated hexagonal tiling honeycomb


    • 3.6 Cantellated hexagonal tiling honeycomb


    • 3.7 Cantitruncated hexagonal tiling honeycomb


    • 3.8 Runcinated hexagonal tiling honeycomb


    • 3.9 Runcitruncated hexagonal tiling honeycomb


    • 3.10 Runcicantellated hexagonal tiling honeycomb


    • 3.11 Omnitruncated hexagonal tiling honeycomb



  • 4 See also


  • 5 References


  • 6 External links




Images


H3 363-1100.png


Viewed in perspective outside of a Poincaré disk model, this shows one hexagonal tiling cell within the honeycomb, and its mid-radius horosphere (the horosphere incident with edge midpoints). In this projection, the hexagons grow infinitely small towards the infinite boundary asymptoting towards a single ideal point. It can be seen as similar to the order-3 apeirogonal tiling, ∞,3 of H2, with horocycle circumscribing vertices of apeirogonal faces.








6,3,3
∞,3

633 honeycomb one cell horosphere.png

Order-3 apeirogonal tiling one cell horocycle.png
One hexagonal tiling of this honeycomb

order-3 apeirogonal tiling with a green apeirogon and its horocycle


Symmetry constructions





Subgroup relations


It has a total of five reflectional constructions from five related Coxeter groups all with four mirrors and only the first being regular: CDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png [6,3,3], CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png [3,6,3], CDel node.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node.png [6,3,6], CDel branch c1.pngCDel split2.pngCDel node c1.pngCDel 6.pngCDel node.png [6,3[3]] and [3[3,3]] CDel branch c1.pngCDel splitcross.pngCDel branch c1.png, having 1, 4, 6, 12 and 24 times larger fundamental domains respectively. In Coxeter notation subgroup markups, they are related as: [6,(3,3)*] (remove 3 mirrors, index 24 subgroup); [3,6,3*] or [3*,6,3] (remove 2 mirrors, index 6 subgroup); [1+,6,3,6,1+] (remove two orthogonal mirrors, index 4 subgroup); all of these are isomorphic to [3[3,3]]. The ringed Coxeter diagrams are CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png, CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png and CDel branch 11.pngCDel splitcross.pngCDel branch 11.png, representing different types (colors) of hexagonal tilings in the Wythoff construction.




Related polytopes and honeycombs


It is one of 15 regular hyperbolic honeycombs in 3-space, 11 of which like this one are paracompact, with infinite cells or vertex figures.














11 paracompact regular honeycombs

H3 633 FC boundary.png
6,3,3

H3 634 FC boundary.png
6,3,4

H3 635 FC boundary.png
6,3,5

H3 636 FC boundary.png
6,3,6

H3 443 FC boundary.png
4,4,3

H3 444 FC boundary.png
4,4,4

H3 336 CC center.png
3,3,6

H3 436 CC center.png
4,3,6

H3 536 CC center.png
5,3,6

H3 363 FC boundary.png
3,6,3

H3 344 CC center.png
3,4,4

It is one of 15 uniform paracompact honeycombs in the [6,3,3] Coxeter group, along with its dual, the order-6 tetrahedral honeycomb, 3,3,6.


































Polytopes and honeycombs with tetrahedral vertex figures


It is in a sequence with regular polychora: 5-cell 3,3,3, tesseract 4,3,3, 120-cell 5,3,3 of Euclidean 4-space, with tetrahedral vertex figures.













































































Polytopes and honeycombs with hexagonal tiling cells


It is a part of sequence of regular honeycombs of the form 6,3,p, with hexagonal tiling cells:








































Rectified hexagonal tiling honeycomb


















Rectified hexagonal tiling honeycomb

H3 633 boundary 0100.png
Type
Paracompact uniform honeycomb
Schläfli symbolsr6,3,3 or t16,3,3
Coxeter diagrams
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
Cells
3,3 Uniform polyhedron-33-t2.png
r6,3 Uniform tiling 63-t1.png or Uniform tiling 333-t12.png
Faces
Triangle 3
Hexagon 6
Vertex figure
Rectified order-3 hexagonal tiling honeycomb verf.png
Triangular prism ×3
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
PropertiesVertex-transitive, edge-transitive

The rectified hexagonal tiling honeycomb, t16,3,3, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png has tetrahedral and trihexagonal tiling facets, with a triangular prism vertex figure. The CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png half-symmetry construction alternate two types of tetrahedra.










Hexagonal tiling honeycomb
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Rectified hexagonal tiling honeycomb
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png or CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

Hyperbolic 3d hexagonal tiling.png

Hyperbolic 3d rectified hexagonal tiling.png
Related H2 tilings
Order-3 apeirogonal tiling
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png

Triapeirogonal tiling
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png or CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.png

H2 tiling 23i-1.png

H2 tiling 23i-2.pngH2 tiling 33i-3.png


Truncated hexagonal tiling honeycomb


















Truncated hexagonal tiling honeycomb
Type
Paracompact uniform honeycomb
Schläfli symbolt6,3,3 or t0,16,3,3
Coxeter diagram
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Cells
3,3 Uniform polyhedron-33-t2.png
t6,3 Uniform tiling 63-t01.png
Faces
Triangle 3
Dodecagon 12
Vertex figure
Truncated order-3 hexagonal tiling honeycomb verf.png
tetrahedron
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
PropertiesVertex-transitive

The truncated hexagonal tiling honeycomb, t0,16,3,3, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png has tetrahedral and truncated hexagonal tiling facets, with a tetrahedral vertex figure.


H3 633-1100.png


It is similar to the 2D hyperbolic truncated order-3 apeirogonal tiling, t∞,3 with apeirogonal and triangle faces:


H2 tiling 23i-3.png


Bitruncated hexagonal tiling honeycomb


















Bitruncated hexagonal tiling honeycomb
Bitruncated order-6 tetrahedral honeycomb
Type
Paracompact uniform honeycomb
Schläfli symbol2t6,3,3 or t1,26,3,3
Coxeter diagram
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells
t3,3 Uniform polyhedron-33-t01.png
t3,6 Uniform tiling 63-t12.png
Faces
Triangle 3
hexagon 6
Vertex figure
Bitruncated order-3 hexagonal tiling honeycomb verf.png
tetrahedron
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
P¯3displaystyle bar P_3bar P_3, [3,3[3]]
PropertiesVertex-transitive

The bitruncated hexagonal tiling honeycomb or bitruncated order-6 tetrahedral honeycomb, t1,26,3,3, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png has truncated tetrahedra and hexagonal tiling cells, with a tetrahedral vertex figure.


H3 633-0110.png




Cantellated hexagonal tiling honeycomb


















Cantellated hexagonal tiling honeycomb
Type
Paracompact uniform honeycomb
Schläfli symbolrr6,3,3 or t0,26,3,3
Coxeter diagram
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells
r3,3 Uniform polyhedron-33-t1.png
rr6,3 Uniform tiling 63-t02.png
×3 Triangular prism.png
Faces
Triangle 3
Square 4
Hexagon 6
Vertex figure
Cantellated order-3 hexagonal tiling honeycomb verf.png
Irreg. triangular prism
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
PropertiesVertex-transitive

The cantellated hexagonal tiling honeycomb, t0,26,3,3, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png has octahedral and rhombitrihexagonal tiling cells, with a triangular prism vertex figure.


H3 633-1010.png




Cantitruncated hexagonal tiling honeycomb


















Cantitruncated hexagonal tiling honeycomb
Type
Paracompact uniform honeycomb
Schläfli symboltr6,3,3 or t0,1,26,3,3
Coxeter diagram
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells
t3,3 Uniform polyhedron-33-t01.png
tr6,3 Uniform tiling 63-t012.svg
×3 Triangular prism.png
Faces
Triangle 3
Square 4
Hexagon 6
Vertex figure
Cantitruncated order-3 hexagonal tiling honeycomb verf.png
Irreg. tetrahedron
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
PropertiesVertex-transitive

The cantitruncated hexagonal tiling honeycomb, t0,1,26,3,3, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png has truncated tetrahedron and truncated trihexagonal tiling cells, with a tetrahedron vertex figure.


H3 633-1110.png




Runcinated hexagonal tiling honeycomb


















Runcinated hexagonal tiling honeycomb
Type
Paracompact uniform honeycomb
Schläfli symbolt0,36,3,3
Coxeter diagram
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells
3,3 Uniform polyhedron-33-t0.png
t0,26,3 Uniform tiling 63-t02.png
×6Hexagonal prism.png
×3 Triangular prism.png
Faces
Triangle 3
Square 4
Hexagon 6
Vertex figure
Runcinated order-3 hexagonal tiling honeycomb verf.png
Octahedron
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
PropertiesVertex-transitive

The runcinated hexagonal tiling honeycomb, t0,36,3,3, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png has tetrahedron, rhombitrihexagonal tiling hexagonal prism, triangular prism cells, with a octahedron vertex figure.


H3 633-1001.png




Runcitruncated hexagonal tiling honeycomb


















Runcitruncated hexagonal tiling honeycomb
Type
Paracompact uniform honeycomb
Schläfli symbolt0,1,36,3,3
Coxeter diagram
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells
rr3,3 Uniform polyhedron-33-t02.png
x3 Triangular prism.png
x12 Dodecagonal prism.png
t6,3 Uniform tiling 63-t01.png
Faces
Triangle 3
Square 4
Hexagon 6
Dodecagon 12
Vertex figure
Runcitruncated order-3 hexagonal tiling honeycomb verf.png
quad-pyramid
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
PropertiesVertex-transitive

The runcitruncated hexagonal tiling honeycomb, t0,1,36,3,3, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png has cuboctahedron, Triangular prism, Dodecagonal prism, and truncated hexagonal tiling cells, with a quad-pyramid vertex figure.


H3 633-1101.png




Runcicantellated hexagonal tiling honeycomb


















Runcicantellated hexagonal tiling honeycomb
runcitruncated order-6 tetrahedral honeycomb
Type
Paracompact uniform honeycomb
Schläfli symbolt0,2,36,3,3
Coxeter diagram
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells
t3,3 Uniform polyhedron-33-t12.png
x6 Hexagonal prism.png
rr6,3 Uniform tiling 63-t02.png
Faces
Triangle 3
Square 4
Hexagon 6
Vertex figure
Runcitruncated order-6 tetrahedral honeycomb verf.png
quad-pyramid
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
PropertiesVertex-transitive

The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t0,2,36,3,3, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png has truncated tetrahedron, hexagonal prism, hexagonal prism, and rhombitrihexagonal tiling cells, with a quad-pyramid vertex figure.


H3 633-1011.png




Omnitruncated hexagonal tiling honeycomb


















Omnitruncated hexagonal tiling honeycomb
Omnitruncated order-6 tetrahedral honeycomb
Type
Paracompact uniform honeycomb
Schläfli symbolt0,1,2,36,3,3
Coxeter diagram
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells
tr3,3 Uniform polyhedron-33-t012.png
x6 Hexagonal prism.png
x12 Dodecagonal prism.png
tr6,3 Uniform tiling 63-t012.svg
Faces
Square 4
Hexagon 6
Dodecagon 12
Vertex figure
Omnitruncated order-3 hexagonal tiling honeycomb verf.png
tetrahedron
Coxeter groups
V¯3displaystyle bar V_3bar V_3, [6,3,3]
PropertiesVertex-transitive

The omnitruncated hexagonal tiling honeycomb or omnitruncated order-6 tetrahedral honeycomb, t0,1,2,36,3,3, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png has truncated octahedron, hexagonal prism, dodecagonal prism, and truncated trihexagonal tiling cells, with a quad-pyramid vertex figure.


H3 633-1111.png




See also


  • Convex uniform honeycombs in hyperbolic space

  • List of regular polytopes


References




  1. ^ Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III




  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. .mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
    ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)


  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678,
    ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III


  • Jeffrey R. Weeks The Shape of Space, 2nd edition
    ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)

  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups (1999), Volume 4, Issue 4, pp 329–353 [1] [2]

  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, (2002) H3: p130. [3]


External links



  • John Baez, Visual Insight: 6,3,3 Honeycomb (2014/03/15)


  • John Baez, Visual Insight: 6,3,3 Honeycomb in Upper Half Space (2013/09/15)


  • John Baez, Visual Insight: Truncated 6,3,3 Honeycomb (2016/12/01)


這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

Museum of Modern and Contemporary Art of Trento and Rovereto