Cannot create pd.Series from dictionary | TypeError: 'values' is not ordered
I can't create a pd.Series
object from this dictionary for some reason. I did it with another one very similar.
Note: Updated 2018-June-04
It looks like there is a GitHub issue for this:
https://github.com/pandas-dev/pandas/issues/15457
pd.__version__
'0.23.0'
import pandas as pd
from numpy import array
import numpy as np
param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
pd.Series(list(param_index.values()), index=param_index.keys())
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
634 try:
--> 635 order = uniques.argsort()
636 order2 = order.argsort()
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
445 try:
--> 446 sorter = values.argsort()
447 ordered = values.take(sorter)
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
344 try:
--> 345 codes, categories = factorize(values, sort=True)
346 except TypeError:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
176 kwargs[new_arg_name] = new_arg_value
--> 177 return func(*args, **kwargs)
178 return wrapper
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
642 na_sentinel=na_sentinel,
--> 643 assume_unique=True)
644
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
449 # try this anyway
--> 450 ordered = sort_mixed(values)
451
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in sort_mixed(values)
435 dtype=bool)
--> 436 nums = np.sort(values[~str_pos])
437 strs = np.sort(values[str_pos])
~/anaconda/envs/python3/lib/python3.6/site-packages/numpy/core/fromnumeric.py in sort(a, axis, kind, order)
846 a = asanyarray(a).copy(order="K")
--> 847 a.sort(axis=axis, kind=kind, order=order)
848 return a
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-72-1f46691300f8> in <module>()
1 param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
----> 2 pd.Series(list(param_index.values()), index=param_index.keys())
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/series.py in __init__(self, data, index, dtype, name, copy, fastpath)
180
181 if index is not None:
--> 182 index = _ensure_index(index)
183
184 if data is None:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in _ensure_index(index_like, copy)
4955 index_like = copy(index_like)
4956
-> 4957 return Index(index_like)
4958
4959
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in __new__(cls, data, dtype, copy, name, fastpath, tupleize_cols, **kwargs)
433 from .multi import MultiIndex
434 return MultiIndex.from_tuples(
--> 435 data, names=name or kwargs.get('names'))
436 # other iterable of some kind
437 subarr = com._asarray_tuplesafe(data, dtype=object)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_tuples(cls, tuples, sortorder, names)
1354 arrays = lzip(*tuples)
1355
-> 1356 return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names)
1357
1358 @classmethod
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_arrays(cls, arrays, sortorder, names)
1298 from pandas.core.arrays.categorical import _factorize_from_iterables
1299
-> 1300 labels, levels = _factorize_from_iterables(arrays)
1301 if names is None:
1302 names = [getattr(arr, "name", None) for arr in arrays]
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterables(iterables)
2541 # For consistency, it should return a list of 2 lists.
2542 return [, ]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in <listcomp>(.0)
2541 # For consistency, it should return a list of 2 lists.
2542 return [, ]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterable(values)
2513 codes = values.codes
2514 else:
-> 2515 cat = Categorical(values, ordered=True)
2516 categories = cat.categories
2517 codes = cat.codes
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
349 # raise, as we don't have a sortable data structure and so
350 # the user should give us one by specifying categories
--> 351 raise TypeError("'values' is not ordered, please "
352 "explicitly specify the categories order "
353 "by passing in a categories argument.")
TypeError: 'values' is not ordered, please explicitly specify the categories order by passing in a categories argument.
python pandas dictionary indexing series
add a comment |
I can't create a pd.Series
object from this dictionary for some reason. I did it with another one very similar.
Note: Updated 2018-June-04
It looks like there is a GitHub issue for this:
https://github.com/pandas-dev/pandas/issues/15457
pd.__version__
'0.23.0'
import pandas as pd
from numpy import array
import numpy as np
param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
pd.Series(list(param_index.values()), index=param_index.keys())
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
634 try:
--> 635 order = uniques.argsort()
636 order2 = order.argsort()
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
445 try:
--> 446 sorter = values.argsort()
447 ordered = values.take(sorter)
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
344 try:
--> 345 codes, categories = factorize(values, sort=True)
346 except TypeError:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
176 kwargs[new_arg_name] = new_arg_value
--> 177 return func(*args, **kwargs)
178 return wrapper
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
642 na_sentinel=na_sentinel,
--> 643 assume_unique=True)
644
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
449 # try this anyway
--> 450 ordered = sort_mixed(values)
451
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in sort_mixed(values)
435 dtype=bool)
--> 436 nums = np.sort(values[~str_pos])
437 strs = np.sort(values[str_pos])
~/anaconda/envs/python3/lib/python3.6/site-packages/numpy/core/fromnumeric.py in sort(a, axis, kind, order)
846 a = asanyarray(a).copy(order="K")
--> 847 a.sort(axis=axis, kind=kind, order=order)
848 return a
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-72-1f46691300f8> in <module>()
1 param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
----> 2 pd.Series(list(param_index.values()), index=param_index.keys())
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/series.py in __init__(self, data, index, dtype, name, copy, fastpath)
180
181 if index is not None:
--> 182 index = _ensure_index(index)
183
184 if data is None:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in _ensure_index(index_like, copy)
4955 index_like = copy(index_like)
4956
-> 4957 return Index(index_like)
4958
4959
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in __new__(cls, data, dtype, copy, name, fastpath, tupleize_cols, **kwargs)
433 from .multi import MultiIndex
434 return MultiIndex.from_tuples(
--> 435 data, names=name or kwargs.get('names'))
436 # other iterable of some kind
437 subarr = com._asarray_tuplesafe(data, dtype=object)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_tuples(cls, tuples, sortorder, names)
1354 arrays = lzip(*tuples)
1355
-> 1356 return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names)
1357
1358 @classmethod
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_arrays(cls, arrays, sortorder, names)
1298 from pandas.core.arrays.categorical import _factorize_from_iterables
1299
-> 1300 labels, levels = _factorize_from_iterables(arrays)
1301 if names is None:
1302 names = [getattr(arr, "name", None) for arr in arrays]
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterables(iterables)
2541 # For consistency, it should return a list of 2 lists.
2542 return [, ]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in <listcomp>(.0)
2541 # For consistency, it should return a list of 2 lists.
2542 return [, ]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterable(values)
2513 codes = values.codes
2514 else:
-> 2515 cat = Categorical(values, ordered=True)
2516 categories = cat.categories
2517 codes = cat.codes
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
349 # raise, as we don't have a sortable data structure and so
350 # the user should give us one by specifying categories
--> 351 raise TypeError("'values' is not ordered, please "
352 "explicitly specify the categories order "
353 "by passing in a categories argument.")
TypeError: 'values' is not ordered, please explicitly specify the categories order by passing in a categories argument.
python pandas dictionary indexing series
2
Can't reproduce, works fine for me on0.22.0
, trying on0.23.0
now
– user3483203
Jun 2 '18 at 23:42
2
Seems like an issue with the most recent version of pandas, it breaks on0.23.0
for me.
– user3483203
Jun 2 '18 at 23:45
I guess I could turn it into a string and then literal_eval it later what I need the vals? What is the categorical thing it's referring to?
– O.rka
Jun 2 '18 at 23:46
1
I just downgraded to 0.22 and it solved all of my problems. thanks for saving the day.
– O.rka
Jun 3 '18 at 21:00
5
Might be worth submitting as an issue. Not sure if that is intended behavior.
– user3483203
Jun 3 '18 at 21:01
add a comment |
I can't create a pd.Series
object from this dictionary for some reason. I did it with another one very similar.
Note: Updated 2018-June-04
It looks like there is a GitHub issue for this:
https://github.com/pandas-dev/pandas/issues/15457
pd.__version__
'0.23.0'
import pandas as pd
from numpy import array
import numpy as np
param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
pd.Series(list(param_index.values()), index=param_index.keys())
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
634 try:
--> 635 order = uniques.argsort()
636 order2 = order.argsort()
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
445 try:
--> 446 sorter = values.argsort()
447 ordered = values.take(sorter)
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
344 try:
--> 345 codes, categories = factorize(values, sort=True)
346 except TypeError:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
176 kwargs[new_arg_name] = new_arg_value
--> 177 return func(*args, **kwargs)
178 return wrapper
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
642 na_sentinel=na_sentinel,
--> 643 assume_unique=True)
644
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
449 # try this anyway
--> 450 ordered = sort_mixed(values)
451
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in sort_mixed(values)
435 dtype=bool)
--> 436 nums = np.sort(values[~str_pos])
437 strs = np.sort(values[str_pos])
~/anaconda/envs/python3/lib/python3.6/site-packages/numpy/core/fromnumeric.py in sort(a, axis, kind, order)
846 a = asanyarray(a).copy(order="K")
--> 847 a.sort(axis=axis, kind=kind, order=order)
848 return a
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-72-1f46691300f8> in <module>()
1 param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
----> 2 pd.Series(list(param_index.values()), index=param_index.keys())
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/series.py in __init__(self, data, index, dtype, name, copy, fastpath)
180
181 if index is not None:
--> 182 index = _ensure_index(index)
183
184 if data is None:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in _ensure_index(index_like, copy)
4955 index_like = copy(index_like)
4956
-> 4957 return Index(index_like)
4958
4959
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in __new__(cls, data, dtype, copy, name, fastpath, tupleize_cols, **kwargs)
433 from .multi import MultiIndex
434 return MultiIndex.from_tuples(
--> 435 data, names=name or kwargs.get('names'))
436 # other iterable of some kind
437 subarr = com._asarray_tuplesafe(data, dtype=object)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_tuples(cls, tuples, sortorder, names)
1354 arrays = lzip(*tuples)
1355
-> 1356 return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names)
1357
1358 @classmethod
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_arrays(cls, arrays, sortorder, names)
1298 from pandas.core.arrays.categorical import _factorize_from_iterables
1299
-> 1300 labels, levels = _factorize_from_iterables(arrays)
1301 if names is None:
1302 names = [getattr(arr, "name", None) for arr in arrays]
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterables(iterables)
2541 # For consistency, it should return a list of 2 lists.
2542 return [, ]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in <listcomp>(.0)
2541 # For consistency, it should return a list of 2 lists.
2542 return [, ]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterable(values)
2513 codes = values.codes
2514 else:
-> 2515 cat = Categorical(values, ordered=True)
2516 categories = cat.categories
2517 codes = cat.codes
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
349 # raise, as we don't have a sortable data structure and so
350 # the user should give us one by specifying categories
--> 351 raise TypeError("'values' is not ordered, please "
352 "explicitly specify the categories order "
353 "by passing in a categories argument.")
TypeError: 'values' is not ordered, please explicitly specify the categories order by passing in a categories argument.
python pandas dictionary indexing series
I can't create a pd.Series
object from this dictionary for some reason. I did it with another one very similar.
Note: Updated 2018-June-04
It looks like there is a GitHub issue for this:
https://github.com/pandas-dev/pandas/issues/15457
pd.__version__
'0.23.0'
import pandas as pd
from numpy import array
import numpy as np
param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
pd.Series(list(param_index.values()), index=param_index.keys())
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
634 try:
--> 635 order = uniques.argsort()
636 order2 = order.argsort()
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
445 try:
--> 446 sorter = values.argsort()
447 ordered = values.take(sorter)
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
344 try:
--> 345 codes, categories = factorize(values, sort=True)
346 except TypeError:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
176 kwargs[new_arg_name] = new_arg_value
--> 177 return func(*args, **kwargs)
178 return wrapper
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
642 na_sentinel=na_sentinel,
--> 643 assume_unique=True)
644
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
449 # try this anyway
--> 450 ordered = sort_mixed(values)
451
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in sort_mixed(values)
435 dtype=bool)
--> 436 nums = np.sort(values[~str_pos])
437 strs = np.sort(values[str_pos])
~/anaconda/envs/python3/lib/python3.6/site-packages/numpy/core/fromnumeric.py in sort(a, axis, kind, order)
846 a = asanyarray(a).copy(order="K")
--> 847 a.sort(axis=axis, kind=kind, order=order)
848 return a
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-72-1f46691300f8> in <module>()
1 param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
----> 2 pd.Series(list(param_index.values()), index=param_index.keys())
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/series.py in __init__(self, data, index, dtype, name, copy, fastpath)
180
181 if index is not None:
--> 182 index = _ensure_index(index)
183
184 if data is None:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in _ensure_index(index_like, copy)
4955 index_like = copy(index_like)
4956
-> 4957 return Index(index_like)
4958
4959
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in __new__(cls, data, dtype, copy, name, fastpath, tupleize_cols, **kwargs)
433 from .multi import MultiIndex
434 return MultiIndex.from_tuples(
--> 435 data, names=name or kwargs.get('names'))
436 # other iterable of some kind
437 subarr = com._asarray_tuplesafe(data, dtype=object)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_tuples(cls, tuples, sortorder, names)
1354 arrays = lzip(*tuples)
1355
-> 1356 return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names)
1357
1358 @classmethod
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_arrays(cls, arrays, sortorder, names)
1298 from pandas.core.arrays.categorical import _factorize_from_iterables
1299
-> 1300 labels, levels = _factorize_from_iterables(arrays)
1301 if names is None:
1302 names = [getattr(arr, "name", None) for arr in arrays]
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterables(iterables)
2541 # For consistency, it should return a list of 2 lists.
2542 return [, ]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in <listcomp>(.0)
2541 # For consistency, it should return a list of 2 lists.
2542 return [, ]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterable(values)
2513 codes = values.codes
2514 else:
-> 2515 cat = Categorical(values, ordered=True)
2516 categories = cat.categories
2517 codes = cat.codes
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
349 # raise, as we don't have a sortable data structure and so
350 # the user should give us one by specifying categories
--> 351 raise TypeError("'values' is not ordered, please "
352 "explicitly specify the categories order "
353 "by passing in a categories argument.")
TypeError: 'values' is not ordered, please explicitly specify the categories order by passing in a categories argument.
python pandas dictionary indexing series
python pandas dictionary indexing series
edited Jun 4 '18 at 15:34
asked Jun 2 '18 at 23:39
O.rka
7,04529105168
7,04529105168
2
Can't reproduce, works fine for me on0.22.0
, trying on0.23.0
now
– user3483203
Jun 2 '18 at 23:42
2
Seems like an issue with the most recent version of pandas, it breaks on0.23.0
for me.
– user3483203
Jun 2 '18 at 23:45
I guess I could turn it into a string and then literal_eval it later what I need the vals? What is the categorical thing it's referring to?
– O.rka
Jun 2 '18 at 23:46
1
I just downgraded to 0.22 and it solved all of my problems. thanks for saving the day.
– O.rka
Jun 3 '18 at 21:00
5
Might be worth submitting as an issue. Not sure if that is intended behavior.
– user3483203
Jun 3 '18 at 21:01
add a comment |
2
Can't reproduce, works fine for me on0.22.0
, trying on0.23.0
now
– user3483203
Jun 2 '18 at 23:42
2
Seems like an issue with the most recent version of pandas, it breaks on0.23.0
for me.
– user3483203
Jun 2 '18 at 23:45
I guess I could turn it into a string and then literal_eval it later what I need the vals? What is the categorical thing it's referring to?
– O.rka
Jun 2 '18 at 23:46
1
I just downgraded to 0.22 and it solved all of my problems. thanks for saving the day.
– O.rka
Jun 3 '18 at 21:00
5
Might be worth submitting as an issue. Not sure if that is intended behavior.
– user3483203
Jun 3 '18 at 21:01
2
2
Can't reproduce, works fine for me on
0.22.0
, trying on 0.23.0
now– user3483203
Jun 2 '18 at 23:42
Can't reproduce, works fine for me on
0.22.0
, trying on 0.23.0
now– user3483203
Jun 2 '18 at 23:42
2
2
Seems like an issue with the most recent version of pandas, it breaks on
0.23.0
for me.– user3483203
Jun 2 '18 at 23:45
Seems like an issue with the most recent version of pandas, it breaks on
0.23.0
for me.– user3483203
Jun 2 '18 at 23:45
I guess I could turn it into a string and then literal_eval it later what I need the vals? What is the categorical thing it's referring to?
– O.rka
Jun 2 '18 at 23:46
I guess I could turn it into a string and then literal_eval it later what I need the vals? What is the categorical thing it's referring to?
– O.rka
Jun 2 '18 at 23:46
1
1
I just downgraded to 0.22 and it solved all of my problems. thanks for saving the day.
– O.rka
Jun 3 '18 at 21:00
I just downgraded to 0.22 and it solved all of my problems. thanks for saving the day.
– O.rka
Jun 3 '18 at 21:00
5
5
Might be worth submitting as an issue. Not sure if that is intended behavior.
– user3483203
Jun 3 '18 at 21:01
Might be worth submitting as an issue. Not sure if that is intended behavior.
– user3483203
Jun 3 '18 at 21:01
add a comment |
1 Answer
1
active
oldest
votes
I think you just need to flatten your list of indexes.
In [1]: s = pd.Series(data=param_index.values(), index=[x[0] for x in param_index.keys()])
In [2]: s.head()
Out[2]:
(criterion, gini) [0, 40, 80, 120, 160, 200]
(criterion, gini) [1, 41, 81, 121, 161, 201]
(criterion, gini) [2, 42, 82, 122, 162, 202]
(criterion, gini) [3, 43, 83, 123, 163, 203]
(criterion, gini) [4, 44, 84, 124, 164, 204]
dtype: object
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f50662091%2fcannot-create-pd-series-from-dictionary-typeerror-values-is-not-ordered%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I think you just need to flatten your list of indexes.
In [1]: s = pd.Series(data=param_index.values(), index=[x[0] for x in param_index.keys()])
In [2]: s.head()
Out[2]:
(criterion, gini) [0, 40, 80, 120, 160, 200]
(criterion, gini) [1, 41, 81, 121, 161, 201]
(criterion, gini) [2, 42, 82, 122, 162, 202]
(criterion, gini) [3, 43, 83, 123, 163, 203]
(criterion, gini) [4, 44, 84, 124, 164, 204]
dtype: object
add a comment |
I think you just need to flatten your list of indexes.
In [1]: s = pd.Series(data=param_index.values(), index=[x[0] for x in param_index.keys()])
In [2]: s.head()
Out[2]:
(criterion, gini) [0, 40, 80, 120, 160, 200]
(criterion, gini) [1, 41, 81, 121, 161, 201]
(criterion, gini) [2, 42, 82, 122, 162, 202]
(criterion, gini) [3, 43, 83, 123, 163, 203]
(criterion, gini) [4, 44, 84, 124, 164, 204]
dtype: object
add a comment |
I think you just need to flatten your list of indexes.
In [1]: s = pd.Series(data=param_index.values(), index=[x[0] for x in param_index.keys()])
In [2]: s.head()
Out[2]:
(criterion, gini) [0, 40, 80, 120, 160, 200]
(criterion, gini) [1, 41, 81, 121, 161, 201]
(criterion, gini) [2, 42, 82, 122, 162, 202]
(criterion, gini) [3, 43, 83, 123, 163, 203]
(criterion, gini) [4, 44, 84, 124, 164, 204]
dtype: object
I think you just need to flatten your list of indexes.
In [1]: s = pd.Series(data=param_index.values(), index=[x[0] for x in param_index.keys()])
In [2]: s.head()
Out[2]:
(criterion, gini) [0, 40, 80, 120, 160, 200]
(criterion, gini) [1, 41, 81, 121, 161, 201]
(criterion, gini) [2, 42, 82, 122, 162, 202]
(criterion, gini) [3, 43, 83, 123, 163, 203]
(criterion, gini) [4, 44, 84, 124, 164, 204]
dtype: object
answered Nov 12 '18 at 19:16
paulo.filip3
2,14811422
2,14811422
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f50662091%2fcannot-create-pd-series-from-dictionary-typeerror-values-is-not-ordered%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
Can't reproduce, works fine for me on
0.22.0
, trying on0.23.0
now– user3483203
Jun 2 '18 at 23:42
2
Seems like an issue with the most recent version of pandas, it breaks on
0.23.0
for me.– user3483203
Jun 2 '18 at 23:45
I guess I could turn it into a string and then literal_eval it later what I need the vals? What is the categorical thing it's referring to?
– O.rka
Jun 2 '18 at 23:46
1
I just downgraded to 0.22 and it solved all of my problems. thanks for saving the day.
– O.rka
Jun 3 '18 at 21:00
5
Might be worth submitting as an issue. Not sure if that is intended behavior.
– user3483203
Jun 3 '18 at 21:01