Convert Pytorch DDPG to Tensorflow
I found this DDPG implementation and I would like to convert it in Tensorflow:
https://github.com/higgsfield/RL-Adventure-2/blob/master/5.ddpg.ipynb
I am using Eager Execution and I have some problems in implementing the ddpg update function. I might have made some mistakes but I cannot find them
--- PYTORCH ---
def ddpg_update(batch_size,
gamma = 0.99,
min_value=-np.inf,
max_value=np.inf,
soft_tau=1e-2):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
policy_loss = value_net(state, policy_net(state))
policy_loss = -policy_loss.mean()
next_action = target_policy_net(next_state)
target_value = target_value_net(next_state, next_action.detach())
expected_value = reward + (1.0 - done) * gamma * target_value
expected_value = torch.clamp(expected_value, min_value, max_value)
value = value_net(state, action)
value_loss = value_criterion(value, expected_value.detach())
policy_optimizer.zero_grad()
policy_loss.backward()
policy_optimizer.step()
value_optimizer.zero_grad()
value_loss.backward()
value_optimizer.step()
for target_param, param in zip(target_value_net.parameters(), value_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
for target_param, param in zip(target_policy_net.parameters(), policy_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
--- TENSORFLOW ---
def ddpg_update(batch_size,
gamma = 0.99,
min_value=-np.inf,
max_value=np.inf,
soft_tau=1e-2):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
state = np.reshape(state, (batch_size, state_dim))
next_state = np.reshape(next_state, (batch_size, state_dim))
action = np.reshape(action, (batch_size, action_dim))
done = np.reshape(done, (batch_size, 1))
t_state = tf.convert_to_tensor(state, dtype=tf.float32)
t_action = tf.convert_to_tensor(action, dtype=tf.float32)
t_reward = tf.convert_to_tensor(reward, dtype=tf.float32)
t_next_state = tf.convert_to_tensor(next_state, dtype=tf.float32)
t_done = tf.convert_to_tensor(done, dtype=tf.float32)
with tf.GradientTape(persistent=True) as tape:
policy_loss = tf.reduce_mean(value_net.predict(t_state, policy_net.predict(t_state)))
t_next_action = target_policy_net.predict(t_next_state)
t_target_value = target_value_net.predict(t_next_state, t_next_action)
expected_value = t_reward + (1.0 - t_done) * gamma * t_target_value
expected_value = tf.clip_by_value(expected_value, tf.constant(min_value), tf.constant(max_value))
value = value_net.predict(t_state, t_action)
value_loss = value_criterion(value, expected_value)
policy_grads = tape.gradient(policy_loss, policy_net.variables)
value_grads = tape.gradient(value_loss, value_net.variables)
policy_optimizer.apply_gradients(zip(policy_grads, policy_net.variables))
value_optimizer.apply_gradients(zip(value_grads, value_net.variables))
#update value target
for x in range(len(value_net.variables)):
#targe = (1-tau)*target + tau*source
#target = target - tau*(target-source)
target_value_net.variables[x].assign_sub(soft_tau * (target_value_net.variables[x] - value_net.variables[x]))
#update policy target
for x in range(len(policy_net.variables)):
target_policy_net.variables[x].assign_sub(soft_tau * (target_policy_net.variables[x] - policy_net.variables[x]))
tensorflow pytorch reinforcement-learning openai-gym q-learning
add a comment |
I found this DDPG implementation and I would like to convert it in Tensorflow:
https://github.com/higgsfield/RL-Adventure-2/blob/master/5.ddpg.ipynb
I am using Eager Execution and I have some problems in implementing the ddpg update function. I might have made some mistakes but I cannot find them
--- PYTORCH ---
def ddpg_update(batch_size,
gamma = 0.99,
min_value=-np.inf,
max_value=np.inf,
soft_tau=1e-2):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
policy_loss = value_net(state, policy_net(state))
policy_loss = -policy_loss.mean()
next_action = target_policy_net(next_state)
target_value = target_value_net(next_state, next_action.detach())
expected_value = reward + (1.0 - done) * gamma * target_value
expected_value = torch.clamp(expected_value, min_value, max_value)
value = value_net(state, action)
value_loss = value_criterion(value, expected_value.detach())
policy_optimizer.zero_grad()
policy_loss.backward()
policy_optimizer.step()
value_optimizer.zero_grad()
value_loss.backward()
value_optimizer.step()
for target_param, param in zip(target_value_net.parameters(), value_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
for target_param, param in zip(target_policy_net.parameters(), policy_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
--- TENSORFLOW ---
def ddpg_update(batch_size,
gamma = 0.99,
min_value=-np.inf,
max_value=np.inf,
soft_tau=1e-2):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
state = np.reshape(state, (batch_size, state_dim))
next_state = np.reshape(next_state, (batch_size, state_dim))
action = np.reshape(action, (batch_size, action_dim))
done = np.reshape(done, (batch_size, 1))
t_state = tf.convert_to_tensor(state, dtype=tf.float32)
t_action = tf.convert_to_tensor(action, dtype=tf.float32)
t_reward = tf.convert_to_tensor(reward, dtype=tf.float32)
t_next_state = tf.convert_to_tensor(next_state, dtype=tf.float32)
t_done = tf.convert_to_tensor(done, dtype=tf.float32)
with tf.GradientTape(persistent=True) as tape:
policy_loss = tf.reduce_mean(value_net.predict(t_state, policy_net.predict(t_state)))
t_next_action = target_policy_net.predict(t_next_state)
t_target_value = target_value_net.predict(t_next_state, t_next_action)
expected_value = t_reward + (1.0 - t_done) * gamma * t_target_value
expected_value = tf.clip_by_value(expected_value, tf.constant(min_value), tf.constant(max_value))
value = value_net.predict(t_state, t_action)
value_loss = value_criterion(value, expected_value)
policy_grads = tape.gradient(policy_loss, policy_net.variables)
value_grads = tape.gradient(value_loss, value_net.variables)
policy_optimizer.apply_gradients(zip(policy_grads, policy_net.variables))
value_optimizer.apply_gradients(zip(value_grads, value_net.variables))
#update value target
for x in range(len(value_net.variables)):
#targe = (1-tau)*target + tau*source
#target = target - tau*(target-source)
target_value_net.variables[x].assign_sub(soft_tau * (target_value_net.variables[x] - value_net.variables[x]))
#update policy target
for x in range(len(policy_net.variables)):
target_policy_net.variables[x].assign_sub(soft_tau * (target_policy_net.variables[x] - policy_net.variables[x]))
tensorflow pytorch reinforcement-learning openai-gym q-learning
I set negative learning rate to the function to maximize the variable I called policy_loss
– Alessio Ragno
Nov 12 '18 at 19:49
add a comment |
I found this DDPG implementation and I would like to convert it in Tensorflow:
https://github.com/higgsfield/RL-Adventure-2/blob/master/5.ddpg.ipynb
I am using Eager Execution and I have some problems in implementing the ddpg update function. I might have made some mistakes but I cannot find them
--- PYTORCH ---
def ddpg_update(batch_size,
gamma = 0.99,
min_value=-np.inf,
max_value=np.inf,
soft_tau=1e-2):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
policy_loss = value_net(state, policy_net(state))
policy_loss = -policy_loss.mean()
next_action = target_policy_net(next_state)
target_value = target_value_net(next_state, next_action.detach())
expected_value = reward + (1.0 - done) * gamma * target_value
expected_value = torch.clamp(expected_value, min_value, max_value)
value = value_net(state, action)
value_loss = value_criterion(value, expected_value.detach())
policy_optimizer.zero_grad()
policy_loss.backward()
policy_optimizer.step()
value_optimizer.zero_grad()
value_loss.backward()
value_optimizer.step()
for target_param, param in zip(target_value_net.parameters(), value_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
for target_param, param in zip(target_policy_net.parameters(), policy_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
--- TENSORFLOW ---
def ddpg_update(batch_size,
gamma = 0.99,
min_value=-np.inf,
max_value=np.inf,
soft_tau=1e-2):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
state = np.reshape(state, (batch_size, state_dim))
next_state = np.reshape(next_state, (batch_size, state_dim))
action = np.reshape(action, (batch_size, action_dim))
done = np.reshape(done, (batch_size, 1))
t_state = tf.convert_to_tensor(state, dtype=tf.float32)
t_action = tf.convert_to_tensor(action, dtype=tf.float32)
t_reward = tf.convert_to_tensor(reward, dtype=tf.float32)
t_next_state = tf.convert_to_tensor(next_state, dtype=tf.float32)
t_done = tf.convert_to_tensor(done, dtype=tf.float32)
with tf.GradientTape(persistent=True) as tape:
policy_loss = tf.reduce_mean(value_net.predict(t_state, policy_net.predict(t_state)))
t_next_action = target_policy_net.predict(t_next_state)
t_target_value = target_value_net.predict(t_next_state, t_next_action)
expected_value = t_reward + (1.0 - t_done) * gamma * t_target_value
expected_value = tf.clip_by_value(expected_value, tf.constant(min_value), tf.constant(max_value))
value = value_net.predict(t_state, t_action)
value_loss = value_criterion(value, expected_value)
policy_grads = tape.gradient(policy_loss, policy_net.variables)
value_grads = tape.gradient(value_loss, value_net.variables)
policy_optimizer.apply_gradients(zip(policy_grads, policy_net.variables))
value_optimizer.apply_gradients(zip(value_grads, value_net.variables))
#update value target
for x in range(len(value_net.variables)):
#targe = (1-tau)*target + tau*source
#target = target - tau*(target-source)
target_value_net.variables[x].assign_sub(soft_tau * (target_value_net.variables[x] - value_net.variables[x]))
#update policy target
for x in range(len(policy_net.variables)):
target_policy_net.variables[x].assign_sub(soft_tau * (target_policy_net.variables[x] - policy_net.variables[x]))
tensorflow pytorch reinforcement-learning openai-gym q-learning
I found this DDPG implementation and I would like to convert it in Tensorflow:
https://github.com/higgsfield/RL-Adventure-2/blob/master/5.ddpg.ipynb
I am using Eager Execution and I have some problems in implementing the ddpg update function. I might have made some mistakes but I cannot find them
--- PYTORCH ---
def ddpg_update(batch_size,
gamma = 0.99,
min_value=-np.inf,
max_value=np.inf,
soft_tau=1e-2):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
policy_loss = value_net(state, policy_net(state))
policy_loss = -policy_loss.mean()
next_action = target_policy_net(next_state)
target_value = target_value_net(next_state, next_action.detach())
expected_value = reward + (1.0 - done) * gamma * target_value
expected_value = torch.clamp(expected_value, min_value, max_value)
value = value_net(state, action)
value_loss = value_criterion(value, expected_value.detach())
policy_optimizer.zero_grad()
policy_loss.backward()
policy_optimizer.step()
value_optimizer.zero_grad()
value_loss.backward()
value_optimizer.step()
for target_param, param in zip(target_value_net.parameters(), value_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
for target_param, param in zip(target_policy_net.parameters(), policy_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
--- TENSORFLOW ---
def ddpg_update(batch_size,
gamma = 0.99,
min_value=-np.inf,
max_value=np.inf,
soft_tau=1e-2):
state, action, reward, next_state, done = replay_buffer.sample(batch_size)
state = np.reshape(state, (batch_size, state_dim))
next_state = np.reshape(next_state, (batch_size, state_dim))
action = np.reshape(action, (batch_size, action_dim))
done = np.reshape(done, (batch_size, 1))
t_state = tf.convert_to_tensor(state, dtype=tf.float32)
t_action = tf.convert_to_tensor(action, dtype=tf.float32)
t_reward = tf.convert_to_tensor(reward, dtype=tf.float32)
t_next_state = tf.convert_to_tensor(next_state, dtype=tf.float32)
t_done = tf.convert_to_tensor(done, dtype=tf.float32)
with tf.GradientTape(persistent=True) as tape:
policy_loss = tf.reduce_mean(value_net.predict(t_state, policy_net.predict(t_state)))
t_next_action = target_policy_net.predict(t_next_state)
t_target_value = target_value_net.predict(t_next_state, t_next_action)
expected_value = t_reward + (1.0 - t_done) * gamma * t_target_value
expected_value = tf.clip_by_value(expected_value, tf.constant(min_value), tf.constant(max_value))
value = value_net.predict(t_state, t_action)
value_loss = value_criterion(value, expected_value)
policy_grads = tape.gradient(policy_loss, policy_net.variables)
value_grads = tape.gradient(value_loss, value_net.variables)
policy_optimizer.apply_gradients(zip(policy_grads, policy_net.variables))
value_optimizer.apply_gradients(zip(value_grads, value_net.variables))
#update value target
for x in range(len(value_net.variables)):
#targe = (1-tau)*target + tau*source
#target = target - tau*(target-source)
target_value_net.variables[x].assign_sub(soft_tau * (target_value_net.variables[x] - value_net.variables[x]))
#update policy target
for x in range(len(policy_net.variables)):
target_policy_net.variables[x].assign_sub(soft_tau * (target_policy_net.variables[x] - policy_net.variables[x]))
tensorflow pytorch reinforcement-learning openai-gym q-learning
tensorflow pytorch reinforcement-learning openai-gym q-learning
edited Nov 12 '18 at 19:46
asked Nov 12 '18 at 17:02
Alessio Ragno
165116
165116
I set negative learning rate to the function to maximize the variable I called policy_loss
– Alessio Ragno
Nov 12 '18 at 19:49
add a comment |
I set negative learning rate to the function to maximize the variable I called policy_loss
– Alessio Ragno
Nov 12 '18 at 19:49
I set negative learning rate to the function to maximize the variable I called policy_loss
– Alessio Ragno
Nov 12 '18 at 19:49
I set negative learning rate to the function to maximize the variable I called policy_loss
– Alessio Ragno
Nov 12 '18 at 19:49
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53266861%2fconvert-pytorch-ddpg-to-tensorflow%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53266861%2fconvert-pytorch-ddpg-to-tensorflow%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I set negative learning rate to the function to maximize the variable I called policy_loss
– Alessio Ragno
Nov 12 '18 at 19:49