How to use “tf.contrib.seq2seq.BahdanauAttention” API in decoder function while using encoder_outputs









up vote
0
down vote

favorite












I am trying to modify my basic encoder-decoder code to Attention based nmt. Here is my code am not able to understand where exactly I am supposed to put attention wrapper.






def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_vocab_size, encoding_embedding_size):

embed = tf.contrib.layers.embed_sequence(rnn_inputs, vocab_size=source_vocab_size, embed_dim=encoding_embedding_size)
stacked_cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), keep_prob) for _ in range(num_layers)])
outputs, state = tf.nn.dynamic_rnn(stacked_cells, embed, dtype=tf.float32)

#return: tuple (RNN output, RNN state)
#RNN State: LSTM Tuple ( c(hidden_state of every layer) and h (output per input) )
return outputs, state


def process_decoder_input(target_data, target_vocab_to_int, batch_size):
# get '<GO>' id
go_id = target_vocab_to_int['<GO>']
after_slice = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
after_concat = tf.concat( [tf.fill([batch_size, 1], go_id), after_slice], 1)

return after_concat

def decoding_layer_train(encoder_outputs, dec_cell, dec_embed_input, target_sequence_length, max_summary_length,
output_layer, keep_prob):

dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = encoder_outputs,
memory_sequence_length = target_sequence_length)

attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
alignment_history=True)

helper = tf.contrib.seq2seq.TrainingHelper(dec_embed_input,target_sequence_length)

decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper, encoder_outputs, output_layer)

outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
maximum_iterations=max_summary_length)
return outputs

def decoding_layer_infer(encoder_outputs, dec_cell, dec_embeddings, start_of_sequence_id,end_of_sequence_id,
max_target_sequence_length,vocab_size, output_layer, batch_size, keep_prob):

#Creating an inference process in decoding layer
dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = ecnoder_outputs,
memory_sequence_length = max_target_sequence_length)

attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
alignment_history=True)

helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, tf.fill([batch_size], start_of_sequence_id),
end_of_sequence_id)

decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper,encoder_outputs,output_layer)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
maximum_iterations=max_target_sequence_length)
return outputs

def decoding_layer(dec_input, encoder_state,target_sequence_length, max_target_sequence_length,
rnn_size,num_layers, target_vocab_to_int, target_vocab_size,batch_size, keep_prob, decoding_embedding_size):

target_vocab_size = len(target_vocab_to_int)
dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)

cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(rnn_size) for _ in range(num_layers)])

with tf.variable_scope("decode"):
output_layer = tf.layers.Dense(target_vocab_size)
train_output = decoding_layer_train(encoder_state, cells, dec_embed_input, target_sequence_length,
max_target_sequence_length, output_layer, keep_prob)

with tf.variable_scope("decode", reuse=True):
infer_output = decoding_layer_infer(encoder_state, cells, dec_embeddings, target_vocab_to_int['<GO>'],
target_vocab_to_int['<EOS>'], max_target_sequence_length, target_vocab_size,
output_layer,batch_size,keep_prob)

return (train_output, infer_output)

def seq2seq_model(input_data, target_data, keep_prob, batch_size,target_sequence_length, max_target_sentence_length,
source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers,
target_vocab_to_int):

enc_states, enc_outputs = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_vocab_size, enc_embedding_size)

dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size)

train_output, infer_output = decoding_layer(dec_input, enc_states, target_sequence_length, max_target_sentence_length,
rnn_size, num_layers,target_vocab_to_int, target_vocab_size,batch_size,
keep_prob,dec_embedding_size)

return train_output, infer_output,enc_outputs, enc_states

to, ifo, eno, ens = seq2seq_model((inputs), targets, keep_prob, batch_size,target_sequence_length, max_target_length,
len(source_vocab_to_int), len(target_vocab_to_int), embed_size, dec_embed_size, rnn_size, num_layers,
target_vocab_to_int)





I understand that how exactly a basic encoder-decoder model works but in case of attention mechanism how do we incorporate Attentions API in decoding part.










share|improve this question

























    up vote
    0
    down vote

    favorite












    I am trying to modify my basic encoder-decoder code to Attention based nmt. Here is my code am not able to understand where exactly I am supposed to put attention wrapper.






    def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_vocab_size, encoding_embedding_size):

    embed = tf.contrib.layers.embed_sequence(rnn_inputs, vocab_size=source_vocab_size, embed_dim=encoding_embedding_size)
    stacked_cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), keep_prob) for _ in range(num_layers)])
    outputs, state = tf.nn.dynamic_rnn(stacked_cells, embed, dtype=tf.float32)

    #return: tuple (RNN output, RNN state)
    #RNN State: LSTM Tuple ( c(hidden_state of every layer) and h (output per input) )
    return outputs, state


    def process_decoder_input(target_data, target_vocab_to_int, batch_size):
    # get '<GO>' id
    go_id = target_vocab_to_int['<GO>']
    after_slice = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
    after_concat = tf.concat( [tf.fill([batch_size, 1], go_id), after_slice], 1)

    return after_concat

    def decoding_layer_train(encoder_outputs, dec_cell, dec_embed_input, target_sequence_length, max_summary_length,
    output_layer, keep_prob):

    dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

    attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = encoder_outputs,
    memory_sequence_length = target_sequence_length)

    attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
    alignment_history=True)

    helper = tf.contrib.seq2seq.TrainingHelper(dec_embed_input,target_sequence_length)

    decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper, encoder_outputs, output_layer)

    outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
    maximum_iterations=max_summary_length)
    return outputs

    def decoding_layer_infer(encoder_outputs, dec_cell, dec_embeddings, start_of_sequence_id,end_of_sequence_id,
    max_target_sequence_length,vocab_size, output_layer, batch_size, keep_prob):

    #Creating an inference process in decoding layer
    dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

    attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = ecnoder_outputs,
    memory_sequence_length = max_target_sequence_length)

    attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
    alignment_history=True)

    helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, tf.fill([batch_size], start_of_sequence_id),
    end_of_sequence_id)

    decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper,encoder_outputs,output_layer)
    outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
    maximum_iterations=max_target_sequence_length)
    return outputs

    def decoding_layer(dec_input, encoder_state,target_sequence_length, max_target_sequence_length,
    rnn_size,num_layers, target_vocab_to_int, target_vocab_size,batch_size, keep_prob, decoding_embedding_size):

    target_vocab_size = len(target_vocab_to_int)
    dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
    dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)

    cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(rnn_size) for _ in range(num_layers)])

    with tf.variable_scope("decode"):
    output_layer = tf.layers.Dense(target_vocab_size)
    train_output = decoding_layer_train(encoder_state, cells, dec_embed_input, target_sequence_length,
    max_target_sequence_length, output_layer, keep_prob)

    with tf.variable_scope("decode", reuse=True):
    infer_output = decoding_layer_infer(encoder_state, cells, dec_embeddings, target_vocab_to_int['<GO>'],
    target_vocab_to_int['<EOS>'], max_target_sequence_length, target_vocab_size,
    output_layer,batch_size,keep_prob)

    return (train_output, infer_output)

    def seq2seq_model(input_data, target_data, keep_prob, batch_size,target_sequence_length, max_target_sentence_length,
    source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers,
    target_vocab_to_int):

    enc_states, enc_outputs = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_vocab_size, enc_embedding_size)

    dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size)

    train_output, infer_output = decoding_layer(dec_input, enc_states, target_sequence_length, max_target_sentence_length,
    rnn_size, num_layers,target_vocab_to_int, target_vocab_size,batch_size,
    keep_prob,dec_embedding_size)

    return train_output, infer_output,enc_outputs, enc_states

    to, ifo, eno, ens = seq2seq_model((inputs), targets, keep_prob, batch_size,target_sequence_length, max_target_length,
    len(source_vocab_to_int), len(target_vocab_to_int), embed_size, dec_embed_size, rnn_size, num_layers,
    target_vocab_to_int)





    I understand that how exactly a basic encoder-decoder model works but in case of attention mechanism how do we incorporate Attentions API in decoding part.










    share|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I am trying to modify my basic encoder-decoder code to Attention based nmt. Here is my code am not able to understand where exactly I am supposed to put attention wrapper.






      def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_vocab_size, encoding_embedding_size):

      embed = tf.contrib.layers.embed_sequence(rnn_inputs, vocab_size=source_vocab_size, embed_dim=encoding_embedding_size)
      stacked_cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), keep_prob) for _ in range(num_layers)])
      outputs, state = tf.nn.dynamic_rnn(stacked_cells, embed, dtype=tf.float32)

      #return: tuple (RNN output, RNN state)
      #RNN State: LSTM Tuple ( c(hidden_state of every layer) and h (output per input) )
      return outputs, state


      def process_decoder_input(target_data, target_vocab_to_int, batch_size):
      # get '<GO>' id
      go_id = target_vocab_to_int['<GO>']
      after_slice = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
      after_concat = tf.concat( [tf.fill([batch_size, 1], go_id), after_slice], 1)

      return after_concat

      def decoding_layer_train(encoder_outputs, dec_cell, dec_embed_input, target_sequence_length, max_summary_length,
      output_layer, keep_prob):

      dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

      attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = encoder_outputs,
      memory_sequence_length = target_sequence_length)

      attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
      alignment_history=True)

      helper = tf.contrib.seq2seq.TrainingHelper(dec_embed_input,target_sequence_length)

      decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper, encoder_outputs, output_layer)

      outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
      maximum_iterations=max_summary_length)
      return outputs

      def decoding_layer_infer(encoder_outputs, dec_cell, dec_embeddings, start_of_sequence_id,end_of_sequence_id,
      max_target_sequence_length,vocab_size, output_layer, batch_size, keep_prob):

      #Creating an inference process in decoding layer
      dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

      attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = ecnoder_outputs,
      memory_sequence_length = max_target_sequence_length)

      attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
      alignment_history=True)

      helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, tf.fill([batch_size], start_of_sequence_id),
      end_of_sequence_id)

      decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper,encoder_outputs,output_layer)
      outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
      maximum_iterations=max_target_sequence_length)
      return outputs

      def decoding_layer(dec_input, encoder_state,target_sequence_length, max_target_sequence_length,
      rnn_size,num_layers, target_vocab_to_int, target_vocab_size,batch_size, keep_prob, decoding_embedding_size):

      target_vocab_size = len(target_vocab_to_int)
      dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
      dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)

      cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(rnn_size) for _ in range(num_layers)])

      with tf.variable_scope("decode"):
      output_layer = tf.layers.Dense(target_vocab_size)
      train_output = decoding_layer_train(encoder_state, cells, dec_embed_input, target_sequence_length,
      max_target_sequence_length, output_layer, keep_prob)

      with tf.variable_scope("decode", reuse=True):
      infer_output = decoding_layer_infer(encoder_state, cells, dec_embeddings, target_vocab_to_int['<GO>'],
      target_vocab_to_int['<EOS>'], max_target_sequence_length, target_vocab_size,
      output_layer,batch_size,keep_prob)

      return (train_output, infer_output)

      def seq2seq_model(input_data, target_data, keep_prob, batch_size,target_sequence_length, max_target_sentence_length,
      source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers,
      target_vocab_to_int):

      enc_states, enc_outputs = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_vocab_size, enc_embedding_size)

      dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size)

      train_output, infer_output = decoding_layer(dec_input, enc_states, target_sequence_length, max_target_sentence_length,
      rnn_size, num_layers,target_vocab_to_int, target_vocab_size,batch_size,
      keep_prob,dec_embedding_size)

      return train_output, infer_output,enc_outputs, enc_states

      to, ifo, eno, ens = seq2seq_model((inputs), targets, keep_prob, batch_size,target_sequence_length, max_target_length,
      len(source_vocab_to_int), len(target_vocab_to_int), embed_size, dec_embed_size, rnn_size, num_layers,
      target_vocab_to_int)





      I understand that how exactly a basic encoder-decoder model works but in case of attention mechanism how do we incorporate Attentions API in decoding part.










      share|improve this question













      I am trying to modify my basic encoder-decoder code to Attention based nmt. Here is my code am not able to understand where exactly I am supposed to put attention wrapper.






      def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_vocab_size, encoding_embedding_size):

      embed = tf.contrib.layers.embed_sequence(rnn_inputs, vocab_size=source_vocab_size, embed_dim=encoding_embedding_size)
      stacked_cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), keep_prob) for _ in range(num_layers)])
      outputs, state = tf.nn.dynamic_rnn(stacked_cells, embed, dtype=tf.float32)

      #return: tuple (RNN output, RNN state)
      #RNN State: LSTM Tuple ( c(hidden_state of every layer) and h (output per input) )
      return outputs, state


      def process_decoder_input(target_data, target_vocab_to_int, batch_size):
      # get '<GO>' id
      go_id = target_vocab_to_int['<GO>']
      after_slice = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
      after_concat = tf.concat( [tf.fill([batch_size, 1], go_id), after_slice], 1)

      return after_concat

      def decoding_layer_train(encoder_outputs, dec_cell, dec_embed_input, target_sequence_length, max_summary_length,
      output_layer, keep_prob):

      dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

      attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = encoder_outputs,
      memory_sequence_length = target_sequence_length)

      attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
      alignment_history=True)

      helper = tf.contrib.seq2seq.TrainingHelper(dec_embed_input,target_sequence_length)

      decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper, encoder_outputs, output_layer)

      outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
      maximum_iterations=max_summary_length)
      return outputs

      def decoding_layer_infer(encoder_outputs, dec_cell, dec_embeddings, start_of_sequence_id,end_of_sequence_id,
      max_target_sequence_length,vocab_size, output_layer, batch_size, keep_prob):

      #Creating an inference process in decoding layer
      dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

      attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = ecnoder_outputs,
      memory_sequence_length = max_target_sequence_length)

      attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
      alignment_history=True)

      helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, tf.fill([batch_size], start_of_sequence_id),
      end_of_sequence_id)

      decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper,encoder_outputs,output_layer)
      outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
      maximum_iterations=max_target_sequence_length)
      return outputs

      def decoding_layer(dec_input, encoder_state,target_sequence_length, max_target_sequence_length,
      rnn_size,num_layers, target_vocab_to_int, target_vocab_size,batch_size, keep_prob, decoding_embedding_size):

      target_vocab_size = len(target_vocab_to_int)
      dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
      dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)

      cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(rnn_size) for _ in range(num_layers)])

      with tf.variable_scope("decode"):
      output_layer = tf.layers.Dense(target_vocab_size)
      train_output = decoding_layer_train(encoder_state, cells, dec_embed_input, target_sequence_length,
      max_target_sequence_length, output_layer, keep_prob)

      with tf.variable_scope("decode", reuse=True):
      infer_output = decoding_layer_infer(encoder_state, cells, dec_embeddings, target_vocab_to_int['<GO>'],
      target_vocab_to_int['<EOS>'], max_target_sequence_length, target_vocab_size,
      output_layer,batch_size,keep_prob)

      return (train_output, infer_output)

      def seq2seq_model(input_data, target_data, keep_prob, batch_size,target_sequence_length, max_target_sentence_length,
      source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers,
      target_vocab_to_int):

      enc_states, enc_outputs = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_vocab_size, enc_embedding_size)

      dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size)

      train_output, infer_output = decoding_layer(dec_input, enc_states, target_sequence_length, max_target_sentence_length,
      rnn_size, num_layers,target_vocab_to_int, target_vocab_size,batch_size,
      keep_prob,dec_embedding_size)

      return train_output, infer_output,enc_outputs, enc_states

      to, ifo, eno, ens = seq2seq_model((inputs), targets, keep_prob, batch_size,target_sequence_length, max_target_length,
      len(source_vocab_to_int), len(target_vocab_to_int), embed_size, dec_embed_size, rnn_size, num_layers,
      target_vocab_to_int)





      I understand that how exactly a basic encoder-decoder model works but in case of attention mechanism how do we incorporate Attentions API in decoding part.






      def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_vocab_size, encoding_embedding_size):

      embed = tf.contrib.layers.embed_sequence(rnn_inputs, vocab_size=source_vocab_size, embed_dim=encoding_embedding_size)
      stacked_cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), keep_prob) for _ in range(num_layers)])
      outputs, state = tf.nn.dynamic_rnn(stacked_cells, embed, dtype=tf.float32)

      #return: tuple (RNN output, RNN state)
      #RNN State: LSTM Tuple ( c(hidden_state of every layer) and h (output per input) )
      return outputs, state


      def process_decoder_input(target_data, target_vocab_to_int, batch_size):
      # get '<GO>' id
      go_id = target_vocab_to_int['<GO>']
      after_slice = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
      after_concat = tf.concat( [tf.fill([batch_size, 1], go_id), after_slice], 1)

      return after_concat

      def decoding_layer_train(encoder_outputs, dec_cell, dec_embed_input, target_sequence_length, max_summary_length,
      output_layer, keep_prob):

      dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

      attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = encoder_outputs,
      memory_sequence_length = target_sequence_length)

      attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
      alignment_history=True)

      helper = tf.contrib.seq2seq.TrainingHelper(dec_embed_input,target_sequence_length)

      decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper, encoder_outputs, output_layer)

      outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
      maximum_iterations=max_summary_length)
      return outputs

      def decoding_layer_infer(encoder_outputs, dec_cell, dec_embeddings, start_of_sequence_id,end_of_sequence_id,
      max_target_sequence_length,vocab_size, output_layer, batch_size, keep_prob):

      #Creating an inference process in decoding layer
      dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

      attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = ecnoder_outputs,
      memory_sequence_length = max_target_sequence_length)

      attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
      alignment_history=True)

      helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, tf.fill([batch_size], start_of_sequence_id),
      end_of_sequence_id)

      decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper,encoder_outputs,output_layer)
      outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
      maximum_iterations=max_target_sequence_length)
      return outputs

      def decoding_layer(dec_input, encoder_state,target_sequence_length, max_target_sequence_length,
      rnn_size,num_layers, target_vocab_to_int, target_vocab_size,batch_size, keep_prob, decoding_embedding_size):

      target_vocab_size = len(target_vocab_to_int)
      dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
      dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)

      cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(rnn_size) for _ in range(num_layers)])

      with tf.variable_scope("decode"):
      output_layer = tf.layers.Dense(target_vocab_size)
      train_output = decoding_layer_train(encoder_state, cells, dec_embed_input, target_sequence_length,
      max_target_sequence_length, output_layer, keep_prob)

      with tf.variable_scope("decode", reuse=True):
      infer_output = decoding_layer_infer(encoder_state, cells, dec_embeddings, target_vocab_to_int['<GO>'],
      target_vocab_to_int['<EOS>'], max_target_sequence_length, target_vocab_size,
      output_layer,batch_size,keep_prob)

      return (train_output, infer_output)

      def seq2seq_model(input_data, target_data, keep_prob, batch_size,target_sequence_length, max_target_sentence_length,
      source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers,
      target_vocab_to_int):

      enc_states, enc_outputs = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_vocab_size, enc_embedding_size)

      dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size)

      train_output, infer_output = decoding_layer(dec_input, enc_states, target_sequence_length, max_target_sentence_length,
      rnn_size, num_layers,target_vocab_to_int, target_vocab_size,batch_size,
      keep_prob,dec_embedding_size)

      return train_output, infer_output,enc_outputs, enc_states

      to, ifo, eno, ens = seq2seq_model((inputs), targets, keep_prob, batch_size,target_sequence_length, max_target_length,
      len(source_vocab_to_int), len(target_vocab_to_int), embed_size, dec_embed_size, rnn_size, num_layers,
      target_vocab_to_int)





      def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_vocab_size, encoding_embedding_size):

      embed = tf.contrib.layers.embed_sequence(rnn_inputs, vocab_size=source_vocab_size, embed_dim=encoding_embedding_size)
      stacked_cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), keep_prob) for _ in range(num_layers)])
      outputs, state = tf.nn.dynamic_rnn(stacked_cells, embed, dtype=tf.float32)

      #return: tuple (RNN output, RNN state)
      #RNN State: LSTM Tuple ( c(hidden_state of every layer) and h (output per input) )
      return outputs, state


      def process_decoder_input(target_data, target_vocab_to_int, batch_size):
      # get '<GO>' id
      go_id = target_vocab_to_int['<GO>']
      after_slice = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
      after_concat = tf.concat( [tf.fill([batch_size, 1], go_id), after_slice], 1)

      return after_concat

      def decoding_layer_train(encoder_outputs, dec_cell, dec_embed_input, target_sequence_length, max_summary_length,
      output_layer, keep_prob):

      dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

      attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = encoder_outputs,
      memory_sequence_length = target_sequence_length)

      attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
      alignment_history=True)

      helper = tf.contrib.seq2seq.TrainingHelper(dec_embed_input,target_sequence_length)

      decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper, encoder_outputs, output_layer)

      outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
      maximum_iterations=max_summary_length)
      return outputs

      def decoding_layer_infer(encoder_outputs, dec_cell, dec_embeddings, start_of_sequence_id,end_of_sequence_id,
      max_target_sequence_length,vocab_size, output_layer, batch_size, keep_prob):

      #Creating an inference process in decoding layer
      dec_cell = tf.contrib.rnn.DropoutWrapper(dec_cell, output_keep_prob=keep_prob)

      attn_mech = tf.contrib.seq2seq.BahdanauAttention(num_units = rnn_size, memory = ecnoder_outputs,
      memory_sequence_length = max_target_sequence_length)

      attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell = dec_cell, attention_mechanism = attn_mech,
      alignment_history=True)

      helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(dec_embeddings, tf.fill([batch_size], start_of_sequence_id),
      end_of_sequence_id)

      decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell, helper,encoder_outputs,output_layer)
      outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder, impute_finished=True,
      maximum_iterations=max_target_sequence_length)
      return outputs

      def decoding_layer(dec_input, encoder_state,target_sequence_length, max_target_sequence_length,
      rnn_size,num_layers, target_vocab_to_int, target_vocab_size,batch_size, keep_prob, decoding_embedding_size):

      target_vocab_size = len(target_vocab_to_int)
      dec_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size]))
      dec_embed_input = tf.nn.embedding_lookup(dec_embeddings, dec_input)

      cells = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(rnn_size) for _ in range(num_layers)])

      with tf.variable_scope("decode"):
      output_layer = tf.layers.Dense(target_vocab_size)
      train_output = decoding_layer_train(encoder_state, cells, dec_embed_input, target_sequence_length,
      max_target_sequence_length, output_layer, keep_prob)

      with tf.variable_scope("decode", reuse=True):
      infer_output = decoding_layer_infer(encoder_state, cells, dec_embeddings, target_vocab_to_int['<GO>'],
      target_vocab_to_int['<EOS>'], max_target_sequence_length, target_vocab_size,
      output_layer,batch_size,keep_prob)

      return (train_output, infer_output)

      def seq2seq_model(input_data, target_data, keep_prob, batch_size,target_sequence_length, max_target_sentence_length,
      source_vocab_size, target_vocab_size, enc_embedding_size, dec_embedding_size, rnn_size, num_layers,
      target_vocab_to_int):

      enc_states, enc_outputs = encoding_layer(input_data, rnn_size, num_layers, keep_prob, source_vocab_size, enc_embedding_size)

      dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size)

      train_output, infer_output = decoding_layer(dec_input, enc_states, target_sequence_length, max_target_sentence_length,
      rnn_size, num_layers,target_vocab_to_int, target_vocab_size,batch_size,
      keep_prob,dec_embedding_size)

      return train_output, infer_output,enc_outputs, enc_states

      to, ifo, eno, ens = seq2seq_model((inputs), targets, keep_prob, batch_size,target_sequence_length, max_target_length,
      len(source_vocab_to_int), len(target_vocab_to_int), embed_size, dec_embed_size, rnn_size, num_layers,
      target_vocab_to_int)






      tensorflow machine-learning deep-learning nlp machine-translation






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 10 at 11:39









      Ryan Zfir

      135




      135



























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53238557%2fhow-to-use-tf-contrib-seq2seq-bahdanauattention-api-in-decoder-function-while%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53238557%2fhow-to-use-tf-contrib-seq2seq-bahdanauattention-api-in-decoder-function-while%23new-answer', 'question_page');

          );

          Post as a guest














































































          這個網誌中的熱門文章

          How to read a connectionString WITH PROVIDER in .NET Core?

          In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

          Museum of Modern and Contemporary Art of Trento and Rovereto