Json file aggregations and transformations to .csv
I have JSON data structured like this:
[
"eventName": "unmuteClick",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099009,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "muteClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099009,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "resumeClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 15416320990586,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "pauseClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 15416320990585,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "mediaDuration",
"intPayload":10000,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "firstQuartileCount",
"intPayload": 1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "secondQuartileCount",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "thirdQuartileCount",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "completeCount",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v"
]
Each record is a different event that can happen during video playback. One video playback has a unique playbackId, so you can see there are 10 events related to the same playback.
What I need to do is aggregate and transform this data to CSV format, where each row would be aggregated results for one playbackId.
I need to transform the values in the eventName field into columns, where the values in the intPayload field are the values of the columns.
Here is the schema I need to use:
playbackId, sessionId, pageAsin, videoAsin, unmuteClick,muteClick, pauseClick, resumeClick, mediaDuration,firstQuartileCount, secondQuartileCount,thirdQuartileCount,completeCount
Based on the data, values for the schema would be like this:
"49309k-54353esfs-resf43-23fs43jk","324435-65657-3256-8787", "B00K7GXXKQ", "B078LXG579v",1,1,1,1,10000,1,1,0,0"
(For the same playbackId, fields like sessionId, pageAsin and videoAsin would be the same.)
Does anything already exist for transformations and aggregations like this? Can I use Elastic Map reduce for calculations like this? The input data size is pretty large.
json amazon-web-services mapreduce aggregate amazon-emr
add a comment |
I have JSON data structured like this:
[
"eventName": "unmuteClick",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099009,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "muteClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099009,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "resumeClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 15416320990586,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "pauseClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 15416320990585,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "mediaDuration",
"intPayload":10000,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "firstQuartileCount",
"intPayload": 1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "secondQuartileCount",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "thirdQuartileCount",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "completeCount",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v"
]
Each record is a different event that can happen during video playback. One video playback has a unique playbackId, so you can see there are 10 events related to the same playback.
What I need to do is aggregate and transform this data to CSV format, where each row would be aggregated results for one playbackId.
I need to transform the values in the eventName field into columns, where the values in the intPayload field are the values of the columns.
Here is the schema I need to use:
playbackId, sessionId, pageAsin, videoAsin, unmuteClick,muteClick, pauseClick, resumeClick, mediaDuration,firstQuartileCount, secondQuartileCount,thirdQuartileCount,completeCount
Based on the data, values for the schema would be like this:
"49309k-54353esfs-resf43-23fs43jk","324435-65657-3256-8787", "B00K7GXXKQ", "B078LXG579v",1,1,1,1,10000,1,1,0,0"
(For the same playbackId, fields like sessionId, pageAsin and videoAsin would be the same.)
Does anything already exist for transformations and aggregations like this? Can I use Elastic Map reduce for calculations like this? The input data size is pretty large.
json amazon-web-services mapreduce aggregate amazon-emr
add a comment |
I have JSON data structured like this:
[
"eventName": "unmuteClick",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099009,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "muteClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099009,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "resumeClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 15416320990586,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "pauseClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 15416320990585,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "mediaDuration",
"intPayload":10000,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "firstQuartileCount",
"intPayload": 1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "secondQuartileCount",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "thirdQuartileCount",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "completeCount",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v"
]
Each record is a different event that can happen during video playback. One video playback has a unique playbackId, so you can see there are 10 events related to the same playback.
What I need to do is aggregate and transform this data to CSV format, where each row would be aggregated results for one playbackId.
I need to transform the values in the eventName field into columns, where the values in the intPayload field are the values of the columns.
Here is the schema I need to use:
playbackId, sessionId, pageAsin, videoAsin, unmuteClick,muteClick, pauseClick, resumeClick, mediaDuration,firstQuartileCount, secondQuartileCount,thirdQuartileCount,completeCount
Based on the data, values for the schema would be like this:
"49309k-54353esfs-resf43-23fs43jk","324435-65657-3256-8787", "B00K7GXXKQ", "B078LXG579v",1,1,1,1,10000,1,1,0,0"
(For the same playbackId, fields like sessionId, pageAsin and videoAsin would be the same.)
Does anything already exist for transformations and aggregations like this? Can I use Elastic Map reduce for calculations like this? The input data size is pretty large.
json amazon-web-services mapreduce aggregate amazon-emr
I have JSON data structured like this:
[
"eventName": "unmuteClick",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099009,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "muteClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099009,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "resumeClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 15416320990586,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "pauseClick",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 15416320990585,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "mediaDuration",
"intPayload":10000,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "firstQuartileCount",
"intPayload": 1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "secondQuartileCount",
"intPayload":1,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "thirdQuartileCount",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v",
"eventName": "completeCount",
"intPayload":0,
"stringPayload": "",
"playbackId": "49309k-54353esfs-resf43-23fs43jk",
"sessionId": "324435-65657-3256-8787",
"timestamp": 1541632099010,
"pageAsin": "B00K7GXXKQ",
"videoAsin": "B078LXG579v"
]
Each record is a different event that can happen during video playback. One video playback has a unique playbackId, so you can see there are 10 events related to the same playback.
What I need to do is aggregate and transform this data to CSV format, where each row would be aggregated results for one playbackId.
I need to transform the values in the eventName field into columns, where the values in the intPayload field are the values of the columns.
Here is the schema I need to use:
playbackId, sessionId, pageAsin, videoAsin, unmuteClick,muteClick, pauseClick, resumeClick, mediaDuration,firstQuartileCount, secondQuartileCount,thirdQuartileCount,completeCount
Based on the data, values for the schema would be like this:
"49309k-54353esfs-resf43-23fs43jk","324435-65657-3256-8787", "B00K7GXXKQ", "B078LXG579v",1,1,1,1,10000,1,1,0,0"
(For the same playbackId, fields like sessionId, pageAsin and videoAsin would be the same.)
Does anything already exist for transformations and aggregations like this? Can I use Elastic Map reduce for calculations like this? The input data size is pretty large.
json amazon-web-services mapreduce aggregate amazon-emr
json amazon-web-services mapreduce aggregate amazon-emr
edited Nov 14 '18 at 7:32
Dave
434
434
asked Nov 14 '18 at 1:17
HelloWorldHelloWorld
4418
4418
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53291819%2fjson-file-aggregations-and-transformations-to-csv%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53291819%2fjson-file-aggregations-and-transformations-to-csv%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown