Ring of integers


In mathematics, the ring of integers of an algebraic number field K is the ring of all integral elements contained in K. An integral element is a root of a monic polynomial with rational integer coefficients, xn + cn−1xn−1 + … + c0. This ring is often denoted by OK or OKdisplaystyle mathcal O_Kmathcal O_K. Since any rational integer number belongs to K and is an integral element of K, the ring Z is always a subring of OK.


The ring Z is the simplest possible ring of integers.[1] Namely, Z = OQ where Q is the field of rational numbers.[2] And indeed, in algebraic number theory the elements of Z are often called the "rational integers" because of this.


The ring of integers of an algebraic number field is the unique maximal order in the field.




Contents





  • 1 Properties


  • 2 Examples


  • 3 Multiplicative structure


  • 4 Generalization


  • 5 References


  • 6 Notes




Properties


The ring of integers OK is a finitely-generated Z-module. Indeed, it is a free Z-module, and thus has an integral basis, that is a basis b1, … ,bn ∈ OK of the Q-vector space K such that each element x in OK can be uniquely represented as


x=∑i=1naibi,displaystyle x=sum _i=1^na_ib_i,x=sum _i=1^na_ib_i,

with aiZ.[3] The rank n of OK as a free Z-module is equal to the degree of K over Q.


The rings of integers in number fields are Dedekind domains.[4]



Examples


If p is a prime, ζ is a pth root of unity and K = Q(ζ) is the corresponding cyclotomic field, then an integral basis of OK = Z[ζ] is given by (1, ζ, ζ2, … , ζp−2).[5]


If d is a square-free integer and K = Q(d) is the corresponding quadratic field, then OK is a ring of quadratic integers and its integral basis is given by (1, (1 + d)/2) if d ≡ 1 (mod 4) and by (1, d) if d ≡ 2, 3 (mod 4).[6]



Multiplicative structure


In a ring of integers, every element has a factorization into irreducible elements, but the ring need not have the property of unique factorisation: for example, in the ring of integers ℤ[-5], the element 6 has two essentially different factorisations into irreducibles:[4][7]


6=2⋅3=(1+−5)(1−−5) .displaystyle 6=2cdot 3=(1+sqrt -5)(1-sqrt -5) .6=2cdot 3=(1+sqrt -5)(1-sqrt -5) .

A ring of integers is always a Dedekind domain, and so has unique factorisation of ideals into prime ideals.[8]


The units of a ring of integers OK is a finitely generated abelian group by Dirichlet's unit theorem. The torsion subgroup consists of the roots of unity of K. A set of torsion-free generators is called a set of fundamental units.[9]



Generalization


One defines the ring of integers of a non-archimedean local field F as the set of all elements of F with absolute value ≤ 1; this is a ring because of the strong triangle inequality.[10] If F is the completion of an algebraic number field, its ring of integers is the completion of the latter's ring of integers. The ring of integers of an algebraic number field may be characterised as the elements which are integers in every non-archimedean completion.[2]


For example, the p-adic integers Zp are the ring of integers of the p-adic numbers Qp.



References



  • Cassels, J.W.S. (1986). Local fields. London Mathematical Society Student Texts. 3. Cambridge: Cambridge University Press. ISBN 0-521-31525-5. Zbl 0595.12006..mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  • Neukirch, Jürgen (1999). Algebraic Number Theory. Grundlehren der mathematischen Wissenschaften. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021.


  • Samuel, Pierre (1972). Algebraic number theory. Hermann/Kershaw.


Notes




  1. ^ The ring of integers, without specifying the field, refers to the ring Z of "ordinary" integers, the prototypical object for all those rings. It is a consequence of the ambiguity of the word "integer" in abstract algebra.


  2. ^ ab Cassels (1986) p.192


  3. ^ Cassels (1986) p.193


  4. ^ ab Samuel (1972) p.49


  5. ^ Samuel (1972) p.43


  6. ^ Samuel (1972) p.35


  7. ^ Artin, Michael (2011). Algebra. Prentice Hall. p. 360. ISBN 978-0-13-241377-0.


  8. ^ Samuel (1972) p.50


  9. ^ Samuel (1972) pp.59-62


  10. ^ Cassels (1986) p. 41









這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

Node.js Script on GitHub Pages or Amazon S3

Museum of Modern and Contemporary Art of Trento and Rovereto