Server (computing)





Wikimedia Foundation servers




First WWW server located at CERN with its original sticker that says: "This machine is a server. DO NOT POWER IT DOWN!!"


In computing, a server is a computer program or a device that provides functionality for other programs or devices, called "clients". This architecture is called the client–server model, and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called "services", such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device.[1] Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.[2]


Client–server systems are today most frequently implemented by (and often identified with) the request–response model: a client sends a request to the server, which performs some action and sends a response back to the client, typically with a result or acknowledgement. Designating a computer as "server-class hardware" implies that it is specialized for running servers on it. This often implies that it is more powerful and reliable than standard personal computers, but alternatively, large computing clusters may be composed of many relatively simple, replaceable server components.




Contents





  • 1 History


  • 2 Operation


  • 3 Purpose


  • 4 Hardware

    • 4.1 Large servers


    • 4.2 Clusters


    • 4.3 Appliances



  • 5 Operating systems


  • 6 Energy consumption


  • 7 See also


  • 8 Notes


  • 9 References


  • 10 Further reading




History


The use of the word server in computing comes from queueing theory,[3] where it dates to the mid 20th century, being notably used in Kendall (1953) (along with "service"), the paper that introduced Kendall's notation. In earlier papers, such as the Erlang (1909), more concrete terms such as "[telephone] operators" are used.


In computing, "server" dates at least to RFC 5 (1969),[4] one of the earliest documents describing ARPANET (the predecessor of Internet), and is contrasted with "user", distinguishing two types of host: "server-host" and "user-host". The use of "serving" also dates to early documents, such as RFC 4,[5] contrasting "serving-host" with "using-host".


The Jargon File defines "server" in the common sense of a process performing service for requests, usually remote, with the 1981 (1.1.0) version reading:


.mw-parser-output .templatequoteoverflow:hidden;margin:1em 0;padding:0 40px.mw-parser-output .templatequote .templatequoteciteline-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0

SERVER n. A kind of DAEMON which performs a service for the requester, which often runs on a computer other than the one on which the server runs.



Operation




A network based on the client–server model where multiple individual clients request services and resources from centralized servers


Strictly speaking, the term server refers to a computer program or process (running program). Through metonymy, it refers to a device used for (or a device dedicated to) running one or several server programs. On a network, such a device is called a host. In addition to server, the words serve and service (as noun and as verb) are frequently used, though servicer and servant are not.[a] The word service (noun) may refer to either the abstract form of functionality, e.g. Web service. Alternatively, it may refer to a computer program that turns a computer into a server, e.g. Windows service. Originally used as "servers serve users" (and "users use servers"), in the sense of "obey", today one often says that "servers serve data", in the same sense as "give". For instance, web servers "serve [up] web pages to users" or "service their requests".


The server is part of the client–server model; in this model, a server serves data for clients. The nature of communication between a client and server is request and response. This is in contrast with peer-to-peer model in which the relationship is on-demand reciprocation. In principle, any computerized process that can be used or called by another process (particularly remotely, particularly to share a resource) is a server, and the calling process or processes is a client. Thus any general purpose computer connected to a network can host servers. For example, if files on a device are shared by some process, that process is a file server. Similarly, web server software can run on any capable computer, and so a laptop or a personal computer can host a web server.


While request–response is the most common client–server design, there are others, such as the publish–subscribe pattern. In the publish–subscribe pattern, clients register with a pub–sub server, subscribing to specified types of messages; this initial registration may be done by request–response. Thereafter, the pub–sub server forwards matching messages to the clients without any further requests: the server pushes messages to the client, rather than the client pulling messages from the server as in request–response.[6]


When referring to hardware, the word server typically designates computer models specialized for their role. In general, a server performs its role better than a generic personal computer.



Purpose



The purpose of a server is to share data as well as to share resources and distribute work. A server computer can serve its own computer programs as well; depending on the scenario, this could be part of a quid pro quo transaction, or simply a technical possibility. The following table shows several scenarios in which a server is used.


















































Server type
Purpose
Clients

Application server
Hosts web apps (computer programs that run inside a web browser) allowing users in the network to run and use them, without having to install a copy on their own computers. Unlike what the name might imply, these servers need not be part of the World Wide Web; any local network would do.
Computers with a web browser

Catalog server
Maintains an index or table of contents of information that can be found across a large distributed network, such as computers, users, files shared on file servers, and web apps. Directory servers and name servers are examples of catalog servers.
Any computer program that needs to find something on the network, such a Domain member attempting to log in, an email client looking for an email address, or a user looking for a file

Communications server
Maintains an environment needed for one communication endpoint (user or devices) to find other endpoints and communicate with them. It may or may not include a directory of communication endpoints and a presence detection service, depending on the openness and security parameters of the network
Communication endpoints (users or devices)

Computing server
Shares vast amounts of computing resources, especially CPU and random-access memory, over a network.
Any computer program that needs more CPU power and RAM than a personal computer can probably afford. The client must be a networked computer; otherwise, there would be no client–server model.

Database server
Maintains and shares any form of database (organized collections of data with predefined properties that may be displayed in a table) over a network.

Spreadsheets, accounting software, asset management software or virtually any computer program that consumes well-organized data, especially in large volumes

Fax server
Shares one or more fax machines over a network, thus eliminating the hassle of physical access
Any fax sender or recipient

File server
Shares files and folders, storage space to hold files and folders, or both, over a network
Networked computers are the intended clients, even though local programs can be clients

Game server
Enables several computers or gaming devices to play multiplayer games
Personal computers or gaming consoles

Mail server
Makes email communication possible in the same way that a post office makes snail mail communication possible
Senders and recipients of email

Media server
Shares digital video or digital audio over a network through media streaming (transmitting content in a way that portions received can be watched or listened to as they arrive, as opposed to downloading an entire file and then using it)
User-attended personal computers equipped with a monitor and a speaker

Print server
Shares one or more printers over a network, thus eliminating the hassle of physical access
Computers in need of printing something

Sound server
Enables computer programs to play and record sound, individually or cooperatively
Computer programs of the same computer and network clients.

Proxy server
Acts as an intermediary between a client and a server, accepting incoming traffic from the client and sending it to the server. Reasons for doing so includes content control and filtering, improving traffic performance, preventing unauthorized network access or simply routing the traffic over a large and complex network.
Any networked computer
Virtual server
Shares hardware and software resources with other virtual servers. It exists only as defined within specialized software called hypervisor. The hypervisor presents virtual hardware to the server as if it were real physical hardware[7]. Server virtualization allows for a more efficient infrastructure.
Any networked computer

Web server
Hosts web pages. A web server is what makes the World Wide Web possible. Each website has one or more web servers.
Computers with a web browser

Almost the entire structure of the Internet is based upon a client–server model. High-level root nameservers, DNS, and routers direct the traffic on the internet. There are millions of servers connected to the Internet, running continuously throughout the world[8] and virtually every action taken by an ordinary Internet user requires one or more interactions with one or more server. There are exceptions that do not use dedicated servers; for example peer-to-peer file sharing, some implementations of telephony (e.g. pre-Microsoft Skype).



Hardware




A rack-mountable server with the top cover removed to reveal internal components


Hardware requirement for servers vary widely, depending on the server's purpose and its software.


Since servers are usually accessed over a network, many run unattended without a computer monitor or input device, audio hardware and USB interfaces. Many servers do not have a graphical user interface (GUI). They are configured and managed remotely. Remote management can be conducted via various methods including Microsoft Management Console (MMC), PowerShell, SSH and browser-based out-of-band management systems such as Dell's iDRAC or HP's iLo.



Large servers


Large traditional single servers would need to be run for long periods without interruption. Availability would have to be very high, making hardware reliability and durability extremely important. Mission-critical enterprise servers would be very fault tolerant and use specialized hardware with low failure rates in order to maximize uptime. Uninterruptible power supplies might be incorporated to guard against power failure. Servers typically include hardware redundancy such as dual power supplies, RAID disk systems, and ECC memory,[9] along with extensive pre-boot memory testing and verification. Critical components might be hot swappable, allowing technicians to replace them on the running server without shutting it down, and to guard against overheating, servers might have more powerful fans or use water cooling. They will often be able to be configured, powered up and down or rebooted remotely, using out-of-band management, typically based on IPMI. Server casings are usually flat and wide, and designed to be rack-mounted.


These types of servers are often housed in dedicated data centers. These will normally have very stable power and Internet and increased security. Noise is also less of a concern, but power consumption and heat output can be a serious issue. Server rooms are equipped with air conditioning devices.


.mw-parser-output .mod-gallerydisplay:table.mw-parser-output .mod-gallery-defaultbackground:transparent;margin-top:0.5em.mw-parser-output .mod-gallery-centermargin-left:auto;margin-right:auto.mw-parser-output .mod-gallery-leftfloat:left.mw-parser-output .mod-gallery-rightfloat:right.mw-parser-output .mod-gallery-nonefloat:none.mw-parser-output .mod-gallery-collapsiblewidth:100%.mw-parser-output .mod-gallery .titledisplay:table-row.mw-parser-output .mod-gallery .title>divdisplay:table-cell;text-align:center;font-weight:bold.mw-parser-output .mod-gallery .maindisplay:table-row.mw-parser-output .mod-gallery .main>divdisplay:table-cell.mw-parser-output .mod-gallery .captiondisplay:table-row;vertical-align:top.mw-parser-output .mod-gallery .caption>divdisplay:table-cell;display:block;font-size:94%;padding:0.mw-parser-output .mod-gallery .footerdisplay:table-row.mw-parser-output .mod-gallery .footer>divdisplay:table-cell;text-align:right;font-size:80%;line-height:1em.mw-parser-output .mod-gallery .gallerybox .thumb imgbackground:none.mw-parser-output .mod-gallery .bordered-images imgborder:solid #eee 1px.mw-parser-output .mod-gallery .whitebg imgbackground:#fff!important.mw-parser-output .mod-gallery .gallerybox divbackground:#fff!important


Clusters



A server farm or server cluster is a collection of computer servers maintained by an organization to supply server functionality far beyond the capability of a single device. Modern data centers are now often built of very large clusters of much simpler servers,[10] and there is a collaborative effort, Open Compute Project around this concept.



Appliances


A class of small specialist servers called network appliances are generally at the low end of the scale, often being smaller than common desktop computers.



Operating systems




Sun's Cobalt Qube 3; a computer server appliance (2002); running Cobalt Linux (a customized version of Red Hat Linux, using the 2.2 Linux kernel), complete with the Apache web server.


On the Internet the dominant operating systems among servers are UNIX-like open-source distributions, such as those based on Linux and FreeBSD,[11] with Windows Server also having a very significant share. Proprietary operating systems such as z/OS and macOS Server are also deployed, but in much smaller numbers.


Specialist server-oriented operating systems have traditionally had features such as:



  • GUI not available or optional

  • Ability to reconfigure and update both hardware and software to some extent without restart

  • Advanced backup facilities to permit regular and frequent online backups of critical data,


  • Transparent data transfer between different volumes or devices

  • Flexible and advanced networking capabilities

  • Automation capabilities such as daemons in UNIX and services in Windows

  • Tight system security, with advanced user, resource, data, and memory protection.

  • Advanced detection and alerting on conditions such as overheating, processor and disk failure.[12]

In practice, today many desktop and server operating systems share similar code bases, differing mostly in configuration.



Energy consumption


In 2010, data centers (servers, cooling, and other electrical infrastructure) were responsible for 1.1-1.5% of electrical energy consumption worldwide and 1.7-2.2% in the United States.[13] One estimate is that total energy consumption for information and communications technology saves more than 5 times its carbon footprint[14] in the rest of the economy by enabling efficiency.



See also



  • Mobile server

  • Peer-to-peer


Notes




  1. ^ A CORBA servant is a server-side object to which method calls from remote method invocation are forwarded, but this is an uncommon usage.




References




  1. ^ Windows Server Administration Fundamentals. Microsoft Official Academic Course. 111 River Street, Hoboken, NJ 07030: John Wiley & Sons. 2011. pp. 2–3. ISBN 978-0-470-90182-3..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ Comer, Douglas E.; Stevens, David L. (1993). Vol III: Client-Server Programming and Applications. Internetworking with TCP/IP. Department of Computer Sciences, Purdue University, West Lafayette, IN 479: Prentice Hall. pp. 11d. ISBN 0-13-474222-2.


  3. ^ Richard A. Henle, Boris W. Kuvshinoff, C. M. Kuvshinoff (1992). Desktop computers: in perspective. Oxford University Press. p. 417. Server is a fairly recent computer networking term derived from queuing theory.CS1 maint: Uses authors parameter (link)


  4. ^ Rulifson, Jeff (June 1969). DEL. IETF. doi:10.17487/RFC0005. RFC 5. https://tools.ietf.org/html/rfc5. Retrieved 30 November 2013. 


  5. ^ Shapiro, Elmer B. (March 1969). Network Timetable. IETF. doi:10.17487/RFC0004. RFC 4. https://tools.ietf.org/html/rfc4. Retrieved 30 November 2013. 


  6. ^ Using the HTTP Publish-Subscribe Server, Oracle


  7. ^ IT Explained. "Server - Definition and Details". www.paessler.com.


  8. ^ "Web Servers". IT Business Edge. Retrieved July 31, 2013.


  9. ^ Li, Huang, Shen, Chu (2010). ""A Realistic Evaluation of Memory Hardware Errors and Software System Susceptibility". Usenix Annual Tech Conference 2010" (PDF). Retrieved 2017-01-30.CS1 maint: Multiple names: authors list (link)


  10. ^ "Google uncloaks once-secret server". CNET. CBS Interactive. Retrieved 2017-01-30.


  11. ^ "Usage statistics and market share of Linux for websites". Retrieved 18 Jan 2013.


  12. ^ "Server Oriented Operating System". Retrieved 2010-05-25.


  13. ^ Markoff, John (31 Jul 2011). "Data Centers Using Less Power Than Forecast, Report Says". NY Times. Retrieved 18 Jan 2013.


  14. ^ "SMART 2020: Enabling the low carbon economy in the information age" (PDF). The Climate Group. 6 Oct 2008. Archived from the original (PDF) on 22 November 2010. Retrieved 18 Jan 2013.



Further reading





.mw-parser-output .refbeginfont-size:90%;margin-bottom:0.5em.mw-parser-output .refbegin-hanging-indents>ullist-style-type:none;margin-left:0.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>ddmargin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none.mw-parser-output .refbegin-100font-size:100%


  • Erlang, Agner Krarup (1909). "The theory of probabilities and telephone conversations" (PDF). Nyt Tidsskrift for Matematik B. 20: 33–39. Archived from the original (PDF) on 2011-10-01.


  • Kendall, D. G. (1953). "Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain". The Annals of Mathematical Statistics. 24 (3): 338. doi:10.1214/aoms/1177728975. JSTOR 2236285.









這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

Museum of Modern and Contemporary Art of Trento and Rovereto