How can I use dropout in keras










1














An error occurred while cnn modeling.
When using dropout, the following error message occurs.



this is error message




UnboundLocalError: local variable 'a' referenced before assignment



model



def getModel(input_shape,filter_size=32,pool_size=(2,2),dropout=0.2): 

model = Sequential()
model.add(Conv2D(16, (3, 3), input_shape=input_shape, activation='elu', kernel_initializer="he_normal", padding='same', kernel_regularizer=regularizers.l2(0.01)))


I want to use dropout after maxpooling



model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(dropout))

model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same',strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(16, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))


this is flatten area



model.add(Flatten())
model.add(Dense(126, kernel_initializer="glorot_normal" ,kernel_regularizer=regularizers.l2(0.01)))
model.add(Activation('tanh'))
model.add(Dense(classes))
model.add(Activation('sigmoid'))


complile



model.compile(loss='categorical_crossentropy',
optimizer='adadelta', #SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
metrics=['accuracy'])
return model


model fit



np.random.seed(42)
hist = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs, verbose = 1, validation_split = .2)









share|improve this question





















  • where you able to fix this?
    – Jose Maria de la Torre
    Nov 19 '18 at 17:12















1














An error occurred while cnn modeling.
When using dropout, the following error message occurs.



this is error message




UnboundLocalError: local variable 'a' referenced before assignment



model



def getModel(input_shape,filter_size=32,pool_size=(2,2),dropout=0.2): 

model = Sequential()
model.add(Conv2D(16, (3, 3), input_shape=input_shape, activation='elu', kernel_initializer="he_normal", padding='same', kernel_regularizer=regularizers.l2(0.01)))


I want to use dropout after maxpooling



model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(dropout))

model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same',strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(16, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))


this is flatten area



model.add(Flatten())
model.add(Dense(126, kernel_initializer="glorot_normal" ,kernel_regularizer=regularizers.l2(0.01)))
model.add(Activation('tanh'))
model.add(Dense(classes))
model.add(Activation('sigmoid'))


complile



model.compile(loss='categorical_crossentropy',
optimizer='adadelta', #SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
metrics=['accuracy'])
return model


model fit



np.random.seed(42)
hist = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs, verbose = 1, validation_split = .2)









share|improve this question





















  • where you able to fix this?
    – Jose Maria de la Torre
    Nov 19 '18 at 17:12













1












1








1







An error occurred while cnn modeling.
When using dropout, the following error message occurs.



this is error message




UnboundLocalError: local variable 'a' referenced before assignment



model



def getModel(input_shape,filter_size=32,pool_size=(2,2),dropout=0.2): 

model = Sequential()
model.add(Conv2D(16, (3, 3), input_shape=input_shape, activation='elu', kernel_initializer="he_normal", padding='same', kernel_regularizer=regularizers.l2(0.01)))


I want to use dropout after maxpooling



model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(dropout))

model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same',strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(16, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))


this is flatten area



model.add(Flatten())
model.add(Dense(126, kernel_initializer="glorot_normal" ,kernel_regularizer=regularizers.l2(0.01)))
model.add(Activation('tanh'))
model.add(Dense(classes))
model.add(Activation('sigmoid'))


complile



model.compile(loss='categorical_crossentropy',
optimizer='adadelta', #SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
metrics=['accuracy'])
return model


model fit



np.random.seed(42)
hist = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs, verbose = 1, validation_split = .2)









share|improve this question













An error occurred while cnn modeling.
When using dropout, the following error message occurs.



this is error message




UnboundLocalError: local variable 'a' referenced before assignment



model



def getModel(input_shape,filter_size=32,pool_size=(2,2),dropout=0.2): 

model = Sequential()
model.add(Conv2D(16, (3, 3), input_shape=input_shape, activation='elu', kernel_initializer="he_normal", padding='same', kernel_regularizer=regularizers.l2(0.01)))


I want to use dropout after maxpooling



model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(dropout))

model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same',strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(16, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))

model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))


this is flatten area



model.add(Flatten())
model.add(Dense(126, kernel_initializer="glorot_normal" ,kernel_regularizer=regularizers.l2(0.01)))
model.add(Activation('tanh'))
model.add(Dense(classes))
model.add(Activation('sigmoid'))


complile



model.compile(loss='categorical_crossentropy',
optimizer='adadelta', #SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
metrics=['accuracy'])
return model


model fit



np.random.seed(42)
hist = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs, verbose = 1, validation_split = .2)






keras dropout






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 12 '18 at 23:49









MK ChoMK Cho

83




83











  • where you able to fix this?
    – Jose Maria de la Torre
    Nov 19 '18 at 17:12
















  • where you able to fix this?
    – Jose Maria de la Torre
    Nov 19 '18 at 17:12















where you able to fix this?
– Jose Maria de la Torre
Nov 19 '18 at 17:12




where you able to fix this?
– Jose Maria de la Torre
Nov 19 '18 at 17:12












1 Answer
1






active

oldest

votes


















0














I couldn't figure out what is 'a' here and hence the error,but I think following code should help:



model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal",padding='same',strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))
model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))
model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
model.add(Activation('elu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))





share|improve this answer




















    Your Answer






    StackExchange.ifUsing("editor", function ()
    StackExchange.using("externalEditor", function ()
    StackExchange.using("snippets", function ()
    StackExchange.snippets.init();
    );
    );
    , "code-snippets");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "1"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53271754%2fhow-can-i-use-dropout-in-keras%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    I couldn't figure out what is 'a' here and hence the error,but I think following code should help:



    model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal",padding='same',strides=1, kernel_regularizer=regularizers.l2(0.02)))
    model.add(Activation('elu'))
    model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
    model.add(Activation('elu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
    model.add(Activation('elu'))
    model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
    model.add(Activation('elu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))





    share|improve this answer

























      0














      I couldn't figure out what is 'a' here and hence the error,but I think following code should help:



      model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal",padding='same',strides=1, kernel_regularizer=regularizers.l2(0.02)))
      model.add(Activation('elu'))
      model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
      model.add(Activation('elu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))
      model.add(Dropout(0.25))

      model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
      model.add(Activation('elu'))
      model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
      model.add(Activation('elu'))
      model.add(MaxPooling2D(pool_size=(2, 2)))
      model.add(Dropout(0.25))





      share|improve this answer























        0












        0








        0






        I couldn't figure out what is 'a' here and hence the error,but I think following code should help:



        model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal",padding='same',strides=1, kernel_regularizer=regularizers.l2(0.02)))
        model.add(Activation('elu'))
        model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
        model.add(Activation('elu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))

        model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
        model.add(Activation('elu'))
        model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
        model.add(Activation('elu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))





        share|improve this answer












        I couldn't figure out what is 'a' here and hence the error,but I think following code should help:



        model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal",padding='same',strides=1, kernel_regularizer=regularizers.l2(0.02)))
        model.add(Activation('elu'))
        model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
        model.add(Activation('elu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))

        model.add(Conv2D(32, (2, 3), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
        model.add(Activation('elu'))
        model.add(Conv2D(32, (2, 2), kernel_initializer="he_normal", padding='same', strides=1, kernel_regularizer=regularizers.l2(0.02)))
        model.add(Activation('elu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 13 '18 at 5:46









        Awaldeep SinghAwaldeep Singh

        947




        947



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53271754%2fhow-can-i-use-dropout-in-keras%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            這個網誌中的熱門文章

            How to read a connectionString WITH PROVIDER in .NET Core?

            Guadeloupe

            Node.js Script on GitHub Pages or Amazon S3