Create distinct cluster for non-ordered sequences in Python









up vote
0
down vote

favorite
1












I have a dataframe containing "ID"s of persons in the first column. Each person can have up to 3 other persons that it is assigned into a unique group (or cluster) with. The related "CO_ID"s of a person are stored in 3 other columns. If a person is alone, i.e. there are no other persons assigned to it, it should be considered as it is in an one-person cluster anyway, the values of the other columns beeing nan. Same applies for persons who are only assigned to e.g. one other person: In this case one column contains a "CO_ID" while the other two columns beeing nan.



I wonder how I can assign those (through the CO_ID columns already excatly determined) clusters to each ID via an additional column called "CLUSTER"? Is there a prebuild function for this?



As it is obvious to see from the example data provided, the order of the "CO_ID"s is not important (for ID = ID1, it doesn't matter if CO_ID1 = ID2 and CO_ID2 = ID3 or CO_ID1 = ID3 and CO_ID2 = ID2).



The input data df1 looks like this:



import pandas as pd
import numpy as np
df1 = pd.DataFrame('ID' : ['ID1','ID2','ID3','ID4','ID5','ID6','ID7','ID8','ID9','ID10'] ,
'CO_ID1' : ['ID2','ID1','ID2','ID6','ID8','ID4','ID4','ID5', np.nan, 'ID4'],
'CO_ID2' : ['ID3','ID3','ID1', 'ID7', np.nan, 'ID7','ID6', np.nan, np.nan, 'ID6'],
'CO_ID3' : [np.nan, np.nan, np.nan, 'ID10', np.nan, 'ID10', 'ID10', np.nan, np.nan, 'ID7'])

Out[1]:

ID CO_ID1 CO_ID2 CO_ID3
0 ID1 ID2 ID3 NaN
1 ID2 ID1 ID3 NaN
2 ID3 ID2 ID1 NaN
3 ID4 ID6 ID7 ID10
4 ID5 ID8 NaN NaN
5 ID6 ID4 ID7 ID10
6 ID7 ID4 ID6 ID10
7 ID8 ID5 NaN NaN
8 ID9 NaN NaN NaN
9 ID10 ID4 ID6 ID7


And the desired output data df2 looks like this:



df2 = pd.DataFrame('ID' : ['ID1','ID2','ID3','ID4','ID5','ID6','ID7','ID8','ID9','ID10'] ,
'CO_ID1' : ['ID2','ID1','ID2','ID6','ID8','ID4','ID4','ID5', np.nan, 'ID4'],
'CO_ID2' : ['ID3','ID3','ID1', 'ID7', np.nan, 'ID7','ID6', np.nan, np.nan, 'ID6'],
'CO_ID3' : [np.nan, np.nan, np.nan, 'ID10', np.nan, 'ID10', 'ID10', np.nan, np.nan, 'ID7'],
'Cluster' : ['C1','C1','C1','C2','C3','C2','C2','C3','C4','C2'])

Out[2]:

ID CO_ID1 CO_ID2 CO_ID3 Cluster
0 ID1 ID2 ID3 NaN C1
1 ID2 ID1 ID3 NaN C1
2 ID3 ID2 ID1 NaN C1
3 ID4 ID6 ID7 ID10 C2
4 ID5 ID8 NaN NaN C3
5 ID6 ID4 ID7 ID10 C2
6 ID7 ID4 ID6 ID10 C2
7 ID8 ID5 NaN NaN C3
8 ID9 NaN NaN NaN C4
9 ID10 ID4 ID6 ID7 C2









share|improve this question



















  • 1




    I believe there is a typo in your input and output. Should the 3rd row be ID3 ID2 ID1 NaN? ID3 is repeated twice
    – ALollz
    Nov 11 at 15:58















up vote
0
down vote

favorite
1












I have a dataframe containing "ID"s of persons in the first column. Each person can have up to 3 other persons that it is assigned into a unique group (or cluster) with. The related "CO_ID"s of a person are stored in 3 other columns. If a person is alone, i.e. there are no other persons assigned to it, it should be considered as it is in an one-person cluster anyway, the values of the other columns beeing nan. Same applies for persons who are only assigned to e.g. one other person: In this case one column contains a "CO_ID" while the other two columns beeing nan.



I wonder how I can assign those (through the CO_ID columns already excatly determined) clusters to each ID via an additional column called "CLUSTER"? Is there a prebuild function for this?



As it is obvious to see from the example data provided, the order of the "CO_ID"s is not important (for ID = ID1, it doesn't matter if CO_ID1 = ID2 and CO_ID2 = ID3 or CO_ID1 = ID3 and CO_ID2 = ID2).



The input data df1 looks like this:



import pandas as pd
import numpy as np
df1 = pd.DataFrame('ID' : ['ID1','ID2','ID3','ID4','ID5','ID6','ID7','ID8','ID9','ID10'] ,
'CO_ID1' : ['ID2','ID1','ID2','ID6','ID8','ID4','ID4','ID5', np.nan, 'ID4'],
'CO_ID2' : ['ID3','ID3','ID1', 'ID7', np.nan, 'ID7','ID6', np.nan, np.nan, 'ID6'],
'CO_ID3' : [np.nan, np.nan, np.nan, 'ID10', np.nan, 'ID10', 'ID10', np.nan, np.nan, 'ID7'])

Out[1]:

ID CO_ID1 CO_ID2 CO_ID3
0 ID1 ID2 ID3 NaN
1 ID2 ID1 ID3 NaN
2 ID3 ID2 ID1 NaN
3 ID4 ID6 ID7 ID10
4 ID5 ID8 NaN NaN
5 ID6 ID4 ID7 ID10
6 ID7 ID4 ID6 ID10
7 ID8 ID5 NaN NaN
8 ID9 NaN NaN NaN
9 ID10 ID4 ID6 ID7


And the desired output data df2 looks like this:



df2 = pd.DataFrame('ID' : ['ID1','ID2','ID3','ID4','ID5','ID6','ID7','ID8','ID9','ID10'] ,
'CO_ID1' : ['ID2','ID1','ID2','ID6','ID8','ID4','ID4','ID5', np.nan, 'ID4'],
'CO_ID2' : ['ID3','ID3','ID1', 'ID7', np.nan, 'ID7','ID6', np.nan, np.nan, 'ID6'],
'CO_ID3' : [np.nan, np.nan, np.nan, 'ID10', np.nan, 'ID10', 'ID10', np.nan, np.nan, 'ID7'],
'Cluster' : ['C1','C1','C1','C2','C3','C2','C2','C3','C4','C2'])

Out[2]:

ID CO_ID1 CO_ID2 CO_ID3 Cluster
0 ID1 ID2 ID3 NaN C1
1 ID2 ID1 ID3 NaN C1
2 ID3 ID2 ID1 NaN C1
3 ID4 ID6 ID7 ID10 C2
4 ID5 ID8 NaN NaN C3
5 ID6 ID4 ID7 ID10 C2
6 ID7 ID4 ID6 ID10 C2
7 ID8 ID5 NaN NaN C3
8 ID9 NaN NaN NaN C4
9 ID10 ID4 ID6 ID7 C2









share|improve this question



















  • 1




    I believe there is a typo in your input and output. Should the 3rd row be ID3 ID2 ID1 NaN? ID3 is repeated twice
    – ALollz
    Nov 11 at 15:58













up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





I have a dataframe containing "ID"s of persons in the first column. Each person can have up to 3 other persons that it is assigned into a unique group (or cluster) with. The related "CO_ID"s of a person are stored in 3 other columns. If a person is alone, i.e. there are no other persons assigned to it, it should be considered as it is in an one-person cluster anyway, the values of the other columns beeing nan. Same applies for persons who are only assigned to e.g. one other person: In this case one column contains a "CO_ID" while the other two columns beeing nan.



I wonder how I can assign those (through the CO_ID columns already excatly determined) clusters to each ID via an additional column called "CLUSTER"? Is there a prebuild function for this?



As it is obvious to see from the example data provided, the order of the "CO_ID"s is not important (for ID = ID1, it doesn't matter if CO_ID1 = ID2 and CO_ID2 = ID3 or CO_ID1 = ID3 and CO_ID2 = ID2).



The input data df1 looks like this:



import pandas as pd
import numpy as np
df1 = pd.DataFrame('ID' : ['ID1','ID2','ID3','ID4','ID5','ID6','ID7','ID8','ID9','ID10'] ,
'CO_ID1' : ['ID2','ID1','ID2','ID6','ID8','ID4','ID4','ID5', np.nan, 'ID4'],
'CO_ID2' : ['ID3','ID3','ID1', 'ID7', np.nan, 'ID7','ID6', np.nan, np.nan, 'ID6'],
'CO_ID3' : [np.nan, np.nan, np.nan, 'ID10', np.nan, 'ID10', 'ID10', np.nan, np.nan, 'ID7'])

Out[1]:

ID CO_ID1 CO_ID2 CO_ID3
0 ID1 ID2 ID3 NaN
1 ID2 ID1 ID3 NaN
2 ID3 ID2 ID1 NaN
3 ID4 ID6 ID7 ID10
4 ID5 ID8 NaN NaN
5 ID6 ID4 ID7 ID10
6 ID7 ID4 ID6 ID10
7 ID8 ID5 NaN NaN
8 ID9 NaN NaN NaN
9 ID10 ID4 ID6 ID7


And the desired output data df2 looks like this:



df2 = pd.DataFrame('ID' : ['ID1','ID2','ID3','ID4','ID5','ID6','ID7','ID8','ID9','ID10'] ,
'CO_ID1' : ['ID2','ID1','ID2','ID6','ID8','ID4','ID4','ID5', np.nan, 'ID4'],
'CO_ID2' : ['ID3','ID3','ID1', 'ID7', np.nan, 'ID7','ID6', np.nan, np.nan, 'ID6'],
'CO_ID3' : [np.nan, np.nan, np.nan, 'ID10', np.nan, 'ID10', 'ID10', np.nan, np.nan, 'ID7'],
'Cluster' : ['C1','C1','C1','C2','C3','C2','C2','C3','C4','C2'])

Out[2]:

ID CO_ID1 CO_ID2 CO_ID3 Cluster
0 ID1 ID2 ID3 NaN C1
1 ID2 ID1 ID3 NaN C1
2 ID3 ID2 ID1 NaN C1
3 ID4 ID6 ID7 ID10 C2
4 ID5 ID8 NaN NaN C3
5 ID6 ID4 ID7 ID10 C2
6 ID7 ID4 ID6 ID10 C2
7 ID8 ID5 NaN NaN C3
8 ID9 NaN NaN NaN C4
9 ID10 ID4 ID6 ID7 C2









share|improve this question















I have a dataframe containing "ID"s of persons in the first column. Each person can have up to 3 other persons that it is assigned into a unique group (or cluster) with. The related "CO_ID"s of a person are stored in 3 other columns. If a person is alone, i.e. there are no other persons assigned to it, it should be considered as it is in an one-person cluster anyway, the values of the other columns beeing nan. Same applies for persons who are only assigned to e.g. one other person: In this case one column contains a "CO_ID" while the other two columns beeing nan.



I wonder how I can assign those (through the CO_ID columns already excatly determined) clusters to each ID via an additional column called "CLUSTER"? Is there a prebuild function for this?



As it is obvious to see from the example data provided, the order of the "CO_ID"s is not important (for ID = ID1, it doesn't matter if CO_ID1 = ID2 and CO_ID2 = ID3 or CO_ID1 = ID3 and CO_ID2 = ID2).



The input data df1 looks like this:



import pandas as pd
import numpy as np
df1 = pd.DataFrame('ID' : ['ID1','ID2','ID3','ID4','ID5','ID6','ID7','ID8','ID9','ID10'] ,
'CO_ID1' : ['ID2','ID1','ID2','ID6','ID8','ID4','ID4','ID5', np.nan, 'ID4'],
'CO_ID2' : ['ID3','ID3','ID1', 'ID7', np.nan, 'ID7','ID6', np.nan, np.nan, 'ID6'],
'CO_ID3' : [np.nan, np.nan, np.nan, 'ID10', np.nan, 'ID10', 'ID10', np.nan, np.nan, 'ID7'])

Out[1]:

ID CO_ID1 CO_ID2 CO_ID3
0 ID1 ID2 ID3 NaN
1 ID2 ID1 ID3 NaN
2 ID3 ID2 ID1 NaN
3 ID4 ID6 ID7 ID10
4 ID5 ID8 NaN NaN
5 ID6 ID4 ID7 ID10
6 ID7 ID4 ID6 ID10
7 ID8 ID5 NaN NaN
8 ID9 NaN NaN NaN
9 ID10 ID4 ID6 ID7


And the desired output data df2 looks like this:



df2 = pd.DataFrame('ID' : ['ID1','ID2','ID3','ID4','ID5','ID6','ID7','ID8','ID9','ID10'] ,
'CO_ID1' : ['ID2','ID1','ID2','ID6','ID8','ID4','ID4','ID5', np.nan, 'ID4'],
'CO_ID2' : ['ID3','ID3','ID1', 'ID7', np.nan, 'ID7','ID6', np.nan, np.nan, 'ID6'],
'CO_ID3' : [np.nan, np.nan, np.nan, 'ID10', np.nan, 'ID10', 'ID10', np.nan, np.nan, 'ID7'],
'Cluster' : ['C1','C1','C1','C2','C3','C2','C2','C3','C4','C2'])

Out[2]:

ID CO_ID1 CO_ID2 CO_ID3 Cluster
0 ID1 ID2 ID3 NaN C1
1 ID2 ID1 ID3 NaN C1
2 ID3 ID2 ID1 NaN C1
3 ID4 ID6 ID7 ID10 C2
4 ID5 ID8 NaN NaN C3
5 ID6 ID4 ID7 ID10 C2
6 ID7 ID4 ID6 ID10 C2
7 ID8 ID5 NaN NaN C3
8 ID9 NaN NaN NaN C4
9 ID10 ID4 ID6 ID7 C2






python python-3.x pandas combinations cluster-analysis






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 13 at 17:41

























asked Nov 11 at 13:06









Constantin

16611




16611







  • 1




    I believe there is a typo in your input and output. Should the 3rd row be ID3 ID2 ID1 NaN? ID3 is repeated twice
    – ALollz
    Nov 11 at 15:58













  • 1




    I believe there is a typo in your input and output. Should the 3rd row be ID3 ID2 ID1 NaN? ID3 is repeated twice
    – ALollz
    Nov 11 at 15:58








1




1




I believe there is a typo in your input and output. Should the 3rd row be ID3 ID2 ID1 NaN? ID3 is repeated twice
– ALollz
Nov 11 at 15:58





I believe there is a typo in your input and output. Should the 3rd row be ID3 ID2 ID1 NaN? ID3 is repeated twice
– ALollz
Nov 11 at 15:58













1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










Apply frozenset row-wise to create distinct groups which are hashable and ordered (so which row they appear in is irrelevant). Group by these and use ngroup to label each distinct group.



df1['Cluster'] = 'C'+ (df1.groupby(df1.apply(frozenset, 1), sort=False).ngroup()+1).astype('str')


Output



 ID CO_ID1 CO_ID2 CO_ID3 Cluster
0 ID1 ID2 ID3 NaN C1
1 ID2 ID1 ID3 NaN C1
2 ID3 ID2 ID1 NaN C1
3 ID4 ID6 ID7 ID10 C2
4 ID5 ID8 NaN NaN C3
5 ID6 ID4 ID7 ID10 C2
6 ID7 ID4 ID6 ID10 C2
7 ID8 ID5 NaN NaN C3
8 ID9 NaN NaN NaN C4
9 ID10 ID4 ID6 ID7 C2



If performance is an issue, sort with numpy. We'll need to replace the floating NaN with strings so all values can be compared across columns.



import numpy as np

d = pd.DataFrame(np.sort(df1.replace(np.NaN, 'NaN').values, 1), index=df1.index)
df1['Cluster'] = 'C'+(d.groupby(d.columns.tolist()).ngroup()+1).astype('str')





share|improve this answer


















  • 1




    Check the running time stackoverflow.com/questions/51182228/…
    – W-B
    Nov 11 at 16:59










Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53249031%2fcreate-distinct-cluster-for-non-ordered-sequences-in-python%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










Apply frozenset row-wise to create distinct groups which are hashable and ordered (so which row they appear in is irrelevant). Group by these and use ngroup to label each distinct group.



df1['Cluster'] = 'C'+ (df1.groupby(df1.apply(frozenset, 1), sort=False).ngroup()+1).astype('str')


Output



 ID CO_ID1 CO_ID2 CO_ID3 Cluster
0 ID1 ID2 ID3 NaN C1
1 ID2 ID1 ID3 NaN C1
2 ID3 ID2 ID1 NaN C1
3 ID4 ID6 ID7 ID10 C2
4 ID5 ID8 NaN NaN C3
5 ID6 ID4 ID7 ID10 C2
6 ID7 ID4 ID6 ID10 C2
7 ID8 ID5 NaN NaN C3
8 ID9 NaN NaN NaN C4
9 ID10 ID4 ID6 ID7 C2



If performance is an issue, sort with numpy. We'll need to replace the floating NaN with strings so all values can be compared across columns.



import numpy as np

d = pd.DataFrame(np.sort(df1.replace(np.NaN, 'NaN').values, 1), index=df1.index)
df1['Cluster'] = 'C'+(d.groupby(d.columns.tolist()).ngroup()+1).astype('str')





share|improve this answer


















  • 1




    Check the running time stackoverflow.com/questions/51182228/…
    – W-B
    Nov 11 at 16:59














up vote
2
down vote



accepted










Apply frozenset row-wise to create distinct groups which are hashable and ordered (so which row they appear in is irrelevant). Group by these and use ngroup to label each distinct group.



df1['Cluster'] = 'C'+ (df1.groupby(df1.apply(frozenset, 1), sort=False).ngroup()+1).astype('str')


Output



 ID CO_ID1 CO_ID2 CO_ID3 Cluster
0 ID1 ID2 ID3 NaN C1
1 ID2 ID1 ID3 NaN C1
2 ID3 ID2 ID1 NaN C1
3 ID4 ID6 ID7 ID10 C2
4 ID5 ID8 NaN NaN C3
5 ID6 ID4 ID7 ID10 C2
6 ID7 ID4 ID6 ID10 C2
7 ID8 ID5 NaN NaN C3
8 ID9 NaN NaN NaN C4
9 ID10 ID4 ID6 ID7 C2



If performance is an issue, sort with numpy. We'll need to replace the floating NaN with strings so all values can be compared across columns.



import numpy as np

d = pd.DataFrame(np.sort(df1.replace(np.NaN, 'NaN').values, 1), index=df1.index)
df1['Cluster'] = 'C'+(d.groupby(d.columns.tolist()).ngroup()+1).astype('str')





share|improve this answer


















  • 1




    Check the running time stackoverflow.com/questions/51182228/…
    – W-B
    Nov 11 at 16:59












up vote
2
down vote



accepted







up vote
2
down vote



accepted






Apply frozenset row-wise to create distinct groups which are hashable and ordered (so which row they appear in is irrelevant). Group by these and use ngroup to label each distinct group.



df1['Cluster'] = 'C'+ (df1.groupby(df1.apply(frozenset, 1), sort=False).ngroup()+1).astype('str')


Output



 ID CO_ID1 CO_ID2 CO_ID3 Cluster
0 ID1 ID2 ID3 NaN C1
1 ID2 ID1 ID3 NaN C1
2 ID3 ID2 ID1 NaN C1
3 ID4 ID6 ID7 ID10 C2
4 ID5 ID8 NaN NaN C3
5 ID6 ID4 ID7 ID10 C2
6 ID7 ID4 ID6 ID10 C2
7 ID8 ID5 NaN NaN C3
8 ID9 NaN NaN NaN C4
9 ID10 ID4 ID6 ID7 C2



If performance is an issue, sort with numpy. We'll need to replace the floating NaN with strings so all values can be compared across columns.



import numpy as np

d = pd.DataFrame(np.sort(df1.replace(np.NaN, 'NaN').values, 1), index=df1.index)
df1['Cluster'] = 'C'+(d.groupby(d.columns.tolist()).ngroup()+1).astype('str')





share|improve this answer














Apply frozenset row-wise to create distinct groups which are hashable and ordered (so which row they appear in is irrelevant). Group by these and use ngroup to label each distinct group.



df1['Cluster'] = 'C'+ (df1.groupby(df1.apply(frozenset, 1), sort=False).ngroup()+1).astype('str')


Output



 ID CO_ID1 CO_ID2 CO_ID3 Cluster
0 ID1 ID2 ID3 NaN C1
1 ID2 ID1 ID3 NaN C1
2 ID3 ID2 ID1 NaN C1
3 ID4 ID6 ID7 ID10 C2
4 ID5 ID8 NaN NaN C3
5 ID6 ID4 ID7 ID10 C2
6 ID7 ID4 ID6 ID10 C2
7 ID8 ID5 NaN NaN C3
8 ID9 NaN NaN NaN C4
9 ID10 ID4 ID6 ID7 C2



If performance is an issue, sort with numpy. We'll need to replace the floating NaN with strings so all values can be compared across columns.



import numpy as np

d = pd.DataFrame(np.sort(df1.replace(np.NaN, 'NaN').values, 1), index=df1.index)
df1['Cluster'] = 'C'+(d.groupby(d.columns.tolist()).ngroup()+1).astype('str')






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 11 at 21:24

























answered Nov 11 at 16:00









ALollz

10.5k31134




10.5k31134







  • 1




    Check the running time stackoverflow.com/questions/51182228/…
    – W-B
    Nov 11 at 16:59












  • 1




    Check the running time stackoverflow.com/questions/51182228/…
    – W-B
    Nov 11 at 16:59







1




1




Check the running time stackoverflow.com/questions/51182228/…
– W-B
Nov 11 at 16:59




Check the running time stackoverflow.com/questions/51182228/…
– W-B
Nov 11 at 16:59

















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53249031%2fcreate-distinct-cluster-for-non-ordered-sequences-in-python%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

Museum of Modern and Contemporary Art of Trento and Rovereto