Implementing U-net for multi-class road segmentation










0















I am trying to train a U-net for image segmentation on satellite data and therewith extract a road network with nine different road types. Thus far I have tried many different U-net codes that are freely available on the web, however I was not able to tailor them to my specific case. I'm sincerely hoping you are able to help me.



The satellite image and associated labels can be downloaded via the following link:
Satellite image and associated labels



Additionally, I've written the following code to prep the data for the Unet



import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict

#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]

#Scaling image
img_scaled = images / images.max()

#Make non-roads 0
labels[labels == 15] = 0

#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400,:4 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)

#splitting images
split_img = [
np.split(array, 25, axis=0)
for array in np.split(img_scaled_resized, 25, axis=1)
]

split_img[-1][-1].shape

#splitting labels
split_labels = [
np.split(array, 25, axis=0)
for array in np.split(labels_resized, 25, axis=1)
]

#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)

train_images = np.reshape(split_img, (625, 256, 256, 4))
train_labels = np.reshape(split_labels, (625, 256, 256))

x_trn = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]

y_trn = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]

plt.imshow(train_images[88,:,:,:])
skimage.io.imshow(train_labels[88,:,:])


Furthermore, I found the following U-net on kaggle, which I think should have to work for this particular case:



def get_unet():
inputs = Input((8, ISZ, ISZ))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)

up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)

up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)

up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)

up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)

conv10 = Convolution2D(N_Cls, 1, 1, activation='sigmoid')(conv9)

model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=[jaccard_coef, jaccard_coef_int, 'accuracy'])
return model


I know it is a big question, but I'm getting pretty desperate. Any help is greatly appreciated!



Kind regards,



Eeuwigestudent1










share|improve this question
























  • Could you add what the actual problem is? Is the code not compiling? Is your training/test accuracy bad?

    – Thomas Pinetz
    Nov 16 '18 at 8:31












  • Thanks for your reply Thomas. I just can't get the u-net to run on my dataset. It's all there, the train val and test set with associating labels but somehow I do not get the input right.

    – Eeuwigestudent1
    Nov 16 '18 at 11:24











  • But what is the problem? Is it a compilation error? Is your accuracy wrong? Does it crash? You should at least post the code that is producing the error and the error itself.

    – Thomas Pinetz
    Nov 16 '18 at 11:30











  • Allright clear. There is no error but I just don't understand how to get the U-net to process the data in an iterable manner. Your absolutely right that the question is too broad and perhaps somewhat vague though. I will continue to work on the script and try to be more specific next time.

    – Eeuwigestudent1
    Nov 16 '18 at 16:02















0















I am trying to train a U-net for image segmentation on satellite data and therewith extract a road network with nine different road types. Thus far I have tried many different U-net codes that are freely available on the web, however I was not able to tailor them to my specific case. I'm sincerely hoping you are able to help me.



The satellite image and associated labels can be downloaded via the following link:
Satellite image and associated labels



Additionally, I've written the following code to prep the data for the Unet



import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict

#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]

#Scaling image
img_scaled = images / images.max()

#Make non-roads 0
labels[labels == 15] = 0

#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400,:4 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)

#splitting images
split_img = [
np.split(array, 25, axis=0)
for array in np.split(img_scaled_resized, 25, axis=1)
]

split_img[-1][-1].shape

#splitting labels
split_labels = [
np.split(array, 25, axis=0)
for array in np.split(labels_resized, 25, axis=1)
]

#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)

train_images = np.reshape(split_img, (625, 256, 256, 4))
train_labels = np.reshape(split_labels, (625, 256, 256))

x_trn = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]

y_trn = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]

plt.imshow(train_images[88,:,:,:])
skimage.io.imshow(train_labels[88,:,:])


Furthermore, I found the following U-net on kaggle, which I think should have to work for this particular case:



def get_unet():
inputs = Input((8, ISZ, ISZ))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)

up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)

up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)

up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)

up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)

conv10 = Convolution2D(N_Cls, 1, 1, activation='sigmoid')(conv9)

model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=[jaccard_coef, jaccard_coef_int, 'accuracy'])
return model


I know it is a big question, but I'm getting pretty desperate. Any help is greatly appreciated!



Kind regards,



Eeuwigestudent1










share|improve this question
























  • Could you add what the actual problem is? Is the code not compiling? Is your training/test accuracy bad?

    – Thomas Pinetz
    Nov 16 '18 at 8:31












  • Thanks for your reply Thomas. I just can't get the u-net to run on my dataset. It's all there, the train val and test set with associating labels but somehow I do not get the input right.

    – Eeuwigestudent1
    Nov 16 '18 at 11:24











  • But what is the problem? Is it a compilation error? Is your accuracy wrong? Does it crash? You should at least post the code that is producing the error and the error itself.

    – Thomas Pinetz
    Nov 16 '18 at 11:30











  • Allright clear. There is no error but I just don't understand how to get the U-net to process the data in an iterable manner. Your absolutely right that the question is too broad and perhaps somewhat vague though. I will continue to work on the script and try to be more specific next time.

    – Eeuwigestudent1
    Nov 16 '18 at 16:02













0












0








0








I am trying to train a U-net for image segmentation on satellite data and therewith extract a road network with nine different road types. Thus far I have tried many different U-net codes that are freely available on the web, however I was not able to tailor them to my specific case. I'm sincerely hoping you are able to help me.



The satellite image and associated labels can be downloaded via the following link:
Satellite image and associated labels



Additionally, I've written the following code to prep the data for the Unet



import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict

#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]

#Scaling image
img_scaled = images / images.max()

#Make non-roads 0
labels[labels == 15] = 0

#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400,:4 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)

#splitting images
split_img = [
np.split(array, 25, axis=0)
for array in np.split(img_scaled_resized, 25, axis=1)
]

split_img[-1][-1].shape

#splitting labels
split_labels = [
np.split(array, 25, axis=0)
for array in np.split(labels_resized, 25, axis=1)
]

#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)

train_images = np.reshape(split_img, (625, 256, 256, 4))
train_labels = np.reshape(split_labels, (625, 256, 256))

x_trn = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]

y_trn = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]

plt.imshow(train_images[88,:,:,:])
skimage.io.imshow(train_labels[88,:,:])


Furthermore, I found the following U-net on kaggle, which I think should have to work for this particular case:



def get_unet():
inputs = Input((8, ISZ, ISZ))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)

up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)

up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)

up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)

up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)

conv10 = Convolution2D(N_Cls, 1, 1, activation='sigmoid')(conv9)

model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=[jaccard_coef, jaccard_coef_int, 'accuracy'])
return model


I know it is a big question, but I'm getting pretty desperate. Any help is greatly appreciated!



Kind regards,



Eeuwigestudent1










share|improve this question
















I am trying to train a U-net for image segmentation on satellite data and therewith extract a road network with nine different road types. Thus far I have tried many different U-net codes that are freely available on the web, however I was not able to tailor them to my specific case. I'm sincerely hoping you are able to help me.



The satellite image and associated labels can be downloaded via the following link:
Satellite image and associated labels



Additionally, I've written the following code to prep the data for the Unet



import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict

#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]

#Scaling image
img_scaled = images / images.max()

#Make non-roads 0
labels[labels == 15] = 0

#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400,:4 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)

#splitting images
split_img = [
np.split(array, 25, axis=0)
for array in np.split(img_scaled_resized, 25, axis=1)
]

split_img[-1][-1].shape

#splitting labels
split_labels = [
np.split(array, 25, axis=0)
for array in np.split(labels_resized, 25, axis=1)
]

#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)

train_images = np.reshape(split_img, (625, 256, 256, 4))
train_labels = np.reshape(split_labels, (625, 256, 256))

x_trn = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]

y_trn = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]

plt.imshow(train_images[88,:,:,:])
skimage.io.imshow(train_labels[88,:,:])


Furthermore, I found the following U-net on kaggle, which I think should have to work for this particular case:



def get_unet():
inputs = Input((8, ISZ, ISZ))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)

up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)

up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)

up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)

up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)

conv10 = Convolution2D(N_Cls, 1, 1, activation='sigmoid')(conv9)

model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=[jaccard_coef, jaccard_coef_int, 'accuracy'])
return model


I know it is a big question, but I'm getting pretty desperate. Any help is greatly appreciated!



Kind regards,



Eeuwigestudent1







python deep-learning conv-neural-network image-segmentation unity3d-unet






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 15 '18 at 16:22







Eeuwigestudent1

















asked Nov 15 '18 at 15:14









Eeuwigestudent1Eeuwigestudent1

417




417












  • Could you add what the actual problem is? Is the code not compiling? Is your training/test accuracy bad?

    – Thomas Pinetz
    Nov 16 '18 at 8:31












  • Thanks for your reply Thomas. I just can't get the u-net to run on my dataset. It's all there, the train val and test set with associating labels but somehow I do not get the input right.

    – Eeuwigestudent1
    Nov 16 '18 at 11:24











  • But what is the problem? Is it a compilation error? Is your accuracy wrong? Does it crash? You should at least post the code that is producing the error and the error itself.

    – Thomas Pinetz
    Nov 16 '18 at 11:30











  • Allright clear. There is no error but I just don't understand how to get the U-net to process the data in an iterable manner. Your absolutely right that the question is too broad and perhaps somewhat vague though. I will continue to work on the script and try to be more specific next time.

    – Eeuwigestudent1
    Nov 16 '18 at 16:02

















  • Could you add what the actual problem is? Is the code not compiling? Is your training/test accuracy bad?

    – Thomas Pinetz
    Nov 16 '18 at 8:31












  • Thanks for your reply Thomas. I just can't get the u-net to run on my dataset. It's all there, the train val and test set with associating labels but somehow I do not get the input right.

    – Eeuwigestudent1
    Nov 16 '18 at 11:24











  • But what is the problem? Is it a compilation error? Is your accuracy wrong? Does it crash? You should at least post the code that is producing the error and the error itself.

    – Thomas Pinetz
    Nov 16 '18 at 11:30











  • Allright clear. There is no error but I just don't understand how to get the U-net to process the data in an iterable manner. Your absolutely right that the question is too broad and perhaps somewhat vague though. I will continue to work on the script and try to be more specific next time.

    – Eeuwigestudent1
    Nov 16 '18 at 16:02
















Could you add what the actual problem is? Is the code not compiling? Is your training/test accuracy bad?

– Thomas Pinetz
Nov 16 '18 at 8:31






Could you add what the actual problem is? Is the code not compiling? Is your training/test accuracy bad?

– Thomas Pinetz
Nov 16 '18 at 8:31














Thanks for your reply Thomas. I just can't get the u-net to run on my dataset. It's all there, the train val and test set with associating labels but somehow I do not get the input right.

– Eeuwigestudent1
Nov 16 '18 at 11:24





Thanks for your reply Thomas. I just can't get the u-net to run on my dataset. It's all there, the train val and test set with associating labels but somehow I do not get the input right.

– Eeuwigestudent1
Nov 16 '18 at 11:24













But what is the problem? Is it a compilation error? Is your accuracy wrong? Does it crash? You should at least post the code that is producing the error and the error itself.

– Thomas Pinetz
Nov 16 '18 at 11:30





But what is the problem? Is it a compilation error? Is your accuracy wrong? Does it crash? You should at least post the code that is producing the error and the error itself.

– Thomas Pinetz
Nov 16 '18 at 11:30













Allright clear. There is no error but I just don't understand how to get the U-net to process the data in an iterable manner. Your absolutely right that the question is too broad and perhaps somewhat vague though. I will continue to work on the script and try to be more specific next time.

– Eeuwigestudent1
Nov 16 '18 at 16:02





Allright clear. There is no error but I just don't understand how to get the U-net to process the data in an iterable manner. Your absolutely right that the question is too broad and perhaps somewhat vague though. I will continue to work on the script and try to be more specific next time.

– Eeuwigestudent1
Nov 16 '18 at 16:02












1 Answer
1






active

oldest

votes


















0














i found that Conv2DTranspose works better than UpSampling2D and here is a quick implementation using the same



def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
return x


def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
y = concatenate([y, residual], axis=3)
y = conv_block(y, nfilters)
return y


def Unet(img_height, img_width, nclasses=3, filters=64):
# down
input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
conv1 = conv_block(input_layer, nfilters=filters)
conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = conv_block(conv1_out, nfilters=filters*2)
conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = conv_block(conv2_out, nfilters=filters*4)
conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = conv_block(conv3_out, nfilters=filters*8)
conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
conv4_out = Dropout(0.5)(conv4_out)
conv5 = conv_block(conv4_out, nfilters=filters*16)
conv5 = Dropout(0.5)(conv5)
# up
deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
deconv6 = Dropout(0.5)(deconv6)
deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
deconv7 = Dropout(0.5)(deconv7)
deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
# output
output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
output_layer = BatchNormalization()(output_layer)
output_layer = Activation('softmax')(output_layer)

model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
return model


Now for the data generators, you can use the builtin ImageDataGenerator class
here is the code from Keras docs



# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=90,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)

# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)

image_generator = image_datagen.flow_from_directory(
'data/images',
class_mode=None,
seed=seed)

mask_generator = mask_datagen.flow_from_directory(
'data/masks',
class_mode=None,
seed=seed)

# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)

model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50)


Another way to go is implement your own generator by extending the Sequence class from Keras



class seg_gen(Sequence):
def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
self.x, self.y = x_set, y_set
self.batch_size = batch_size
self.samples = len(self.x)
self.image_dir = image_dir
self.mask_dir = mask_dir

def __len__(self):
return int(np.ceil(len(self.x) / float(self.batch_size)))

def __getitem__(self, idx):
idx = np.random.randint(0, self.samples, batch_size)
batch_x, batch_y = ,
drawn = 0
for i in idx:
_image = image.img_to_array(image.load_img(f'self.image_dir/self.x[i]', target_size=(img_height, img_width)))/255.
mask = image.img_to_array(image.load_img(f'self.mask_dir/self.y[i]', grayscale=True, target_size=(img_height, img_width)))
# mask = np.resize(mask,(img_height*img_width, classes))
batch_y.append(mask)
batch_x.append(_image)
return np.array(batch_x), np.array(batch_y)


Here is a sample code to train the model



unet = Unet(256, 256, nclasses=66, filters=64)
print(unet.output_shape)
p_unet = multi_gpu_model(unet, 4)
p_unet.load_weights('models-dr/top_weights.h5')
p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
tb = TensorBoard(log_dir='logs', write_graph=True)
mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
callbacks = [tb, mc, es]
train_gen = seg_gen(image_list, mask_list, batch_size)


p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)


I have tried using the dice loss when i had only two classes, here is the code for it



def dice_coeff(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
return score

def dice_loss(y_true, y_pred):
loss = 1 - dice_coeff(y_true, y_pred)
return loss





share|improve this answer
























    Your Answer






    StackExchange.ifUsing("editor", function ()
    StackExchange.using("externalEditor", function ()
    StackExchange.using("snippets", function ()
    StackExchange.snippets.init();
    );
    );
    , "code-snippets");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "1"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53322488%2fimplementing-u-net-for-multi-class-road-segmentation%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    i found that Conv2DTranspose works better than UpSampling2D and here is a quick implementation using the same



    def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
    x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)
    x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)
    return x


    def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
    y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
    y = concatenate([y, residual], axis=3)
    y = conv_block(y, nfilters)
    return y


    def Unet(img_height, img_width, nclasses=3, filters=64):
    # down
    input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
    conv1 = conv_block(input_layer, nfilters=filters)
    conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = conv_block(conv1_out, nfilters=filters*2)
    conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = conv_block(conv2_out, nfilters=filters*4)
    conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = conv_block(conv3_out, nfilters=filters*8)
    conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
    conv4_out = Dropout(0.5)(conv4_out)
    conv5 = conv_block(conv4_out, nfilters=filters*16)
    conv5 = Dropout(0.5)(conv5)
    # up
    deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
    deconv6 = Dropout(0.5)(deconv6)
    deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
    deconv7 = Dropout(0.5)(deconv7)
    deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
    deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
    # output
    output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
    output_layer = BatchNormalization()(output_layer)
    output_layer = Activation('softmax')(output_layer)

    model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
    return model


    Now for the data generators, you can use the builtin ImageDataGenerator class
    here is the code from Keras docs



    # we create two instances with the same arguments
    data_gen_args = dict(featurewise_center=True,
    featurewise_std_normalization=True,
    rotation_range=90,
    width_shift_range=0.1,
    height_shift_range=0.1,
    zoom_range=0.2)
    image_datagen = ImageDataGenerator(**data_gen_args)
    mask_datagen = ImageDataGenerator(**data_gen_args)

    # Provide the same seed and keyword arguments to the fit and flow methods
    seed = 1
    image_datagen.fit(images, augment=True, seed=seed)
    mask_datagen.fit(masks, augment=True, seed=seed)

    image_generator = image_datagen.flow_from_directory(
    'data/images',
    class_mode=None,
    seed=seed)

    mask_generator = mask_datagen.flow_from_directory(
    'data/masks',
    class_mode=None,
    seed=seed)

    # combine generators into one which yields image and masks
    train_generator = zip(image_generator, mask_generator)

    model.fit_generator(
    train_generator,
    steps_per_epoch=2000,
    epochs=50)


    Another way to go is implement your own generator by extending the Sequence class from Keras



    class seg_gen(Sequence):
    def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
    self.x, self.y = x_set, y_set
    self.batch_size = batch_size
    self.samples = len(self.x)
    self.image_dir = image_dir
    self.mask_dir = mask_dir

    def __len__(self):
    return int(np.ceil(len(self.x) / float(self.batch_size)))

    def __getitem__(self, idx):
    idx = np.random.randint(0, self.samples, batch_size)
    batch_x, batch_y = ,
    drawn = 0
    for i in idx:
    _image = image.img_to_array(image.load_img(f'self.image_dir/self.x[i]', target_size=(img_height, img_width)))/255.
    mask = image.img_to_array(image.load_img(f'self.mask_dir/self.y[i]', grayscale=True, target_size=(img_height, img_width)))
    # mask = np.resize(mask,(img_height*img_width, classes))
    batch_y.append(mask)
    batch_x.append(_image)
    return np.array(batch_x), np.array(batch_y)


    Here is a sample code to train the model



    unet = Unet(256, 256, nclasses=66, filters=64)
    print(unet.output_shape)
    p_unet = multi_gpu_model(unet, 4)
    p_unet.load_weights('models-dr/top_weights.h5')
    p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
    tb = TensorBoard(log_dir='logs', write_graph=True)
    mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
    es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
    callbacks = [tb, mc, es]
    train_gen = seg_gen(image_list, mask_list, batch_size)


    p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)


    I have tried using the dice loss when i had only two classes, here is the code for it



    def dice_coeff(y_true, y_pred):
    smooth = 1.
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
    return score

    def dice_loss(y_true, y_pred):
    loss = 1 - dice_coeff(y_true, y_pred)
    return loss





    share|improve this answer





























      0














      i found that Conv2DTranspose works better than UpSampling2D and here is a quick implementation using the same



      def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
      x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
      x = BatchNormalization()(x)
      x = Activation("relu")(x)
      x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
      x = BatchNormalization()(x)
      x = Activation("relu")(x)
      return x


      def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
      y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
      y = concatenate([y, residual], axis=3)
      y = conv_block(y, nfilters)
      return y


      def Unet(img_height, img_width, nclasses=3, filters=64):
      # down
      input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
      conv1 = conv_block(input_layer, nfilters=filters)
      conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
      conv2 = conv_block(conv1_out, nfilters=filters*2)
      conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
      conv3 = conv_block(conv2_out, nfilters=filters*4)
      conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
      conv4 = conv_block(conv3_out, nfilters=filters*8)
      conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
      conv4_out = Dropout(0.5)(conv4_out)
      conv5 = conv_block(conv4_out, nfilters=filters*16)
      conv5 = Dropout(0.5)(conv5)
      # up
      deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
      deconv6 = Dropout(0.5)(deconv6)
      deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
      deconv7 = Dropout(0.5)(deconv7)
      deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
      deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
      # output
      output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
      output_layer = BatchNormalization()(output_layer)
      output_layer = Activation('softmax')(output_layer)

      model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
      return model


      Now for the data generators, you can use the builtin ImageDataGenerator class
      here is the code from Keras docs



      # we create two instances with the same arguments
      data_gen_args = dict(featurewise_center=True,
      featurewise_std_normalization=True,
      rotation_range=90,
      width_shift_range=0.1,
      height_shift_range=0.1,
      zoom_range=0.2)
      image_datagen = ImageDataGenerator(**data_gen_args)
      mask_datagen = ImageDataGenerator(**data_gen_args)

      # Provide the same seed and keyword arguments to the fit and flow methods
      seed = 1
      image_datagen.fit(images, augment=True, seed=seed)
      mask_datagen.fit(masks, augment=True, seed=seed)

      image_generator = image_datagen.flow_from_directory(
      'data/images',
      class_mode=None,
      seed=seed)

      mask_generator = mask_datagen.flow_from_directory(
      'data/masks',
      class_mode=None,
      seed=seed)

      # combine generators into one which yields image and masks
      train_generator = zip(image_generator, mask_generator)

      model.fit_generator(
      train_generator,
      steps_per_epoch=2000,
      epochs=50)


      Another way to go is implement your own generator by extending the Sequence class from Keras



      class seg_gen(Sequence):
      def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
      self.x, self.y = x_set, y_set
      self.batch_size = batch_size
      self.samples = len(self.x)
      self.image_dir = image_dir
      self.mask_dir = mask_dir

      def __len__(self):
      return int(np.ceil(len(self.x) / float(self.batch_size)))

      def __getitem__(self, idx):
      idx = np.random.randint(0, self.samples, batch_size)
      batch_x, batch_y = ,
      drawn = 0
      for i in idx:
      _image = image.img_to_array(image.load_img(f'self.image_dir/self.x[i]', target_size=(img_height, img_width)))/255.
      mask = image.img_to_array(image.load_img(f'self.mask_dir/self.y[i]', grayscale=True, target_size=(img_height, img_width)))
      # mask = np.resize(mask,(img_height*img_width, classes))
      batch_y.append(mask)
      batch_x.append(_image)
      return np.array(batch_x), np.array(batch_y)


      Here is a sample code to train the model



      unet = Unet(256, 256, nclasses=66, filters=64)
      print(unet.output_shape)
      p_unet = multi_gpu_model(unet, 4)
      p_unet.load_weights('models-dr/top_weights.h5')
      p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
      tb = TensorBoard(log_dir='logs', write_graph=True)
      mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
      es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
      callbacks = [tb, mc, es]
      train_gen = seg_gen(image_list, mask_list, batch_size)


      p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)


      I have tried using the dice loss when i had only two classes, here is the code for it



      def dice_coeff(y_true, y_pred):
      smooth = 1.
      y_true_f = K.flatten(y_true)
      y_pred_f = K.flatten(y_pred)
      intersection = K.sum(y_true_f * y_pred_f)
      score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
      return score

      def dice_loss(y_true, y_pred):
      loss = 1 - dice_coeff(y_true, y_pred)
      return loss





      share|improve this answer



























        0












        0








        0







        i found that Conv2DTranspose works better than UpSampling2D and here is a quick implementation using the same



        def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
        x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
        x = BatchNormalization()(x)
        x = Activation("relu")(x)
        x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
        x = BatchNormalization()(x)
        x = Activation("relu")(x)
        return x


        def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
        y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
        y = concatenate([y, residual], axis=3)
        y = conv_block(y, nfilters)
        return y


        def Unet(img_height, img_width, nclasses=3, filters=64):
        # down
        input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
        conv1 = conv_block(input_layer, nfilters=filters)
        conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
        conv2 = conv_block(conv1_out, nfilters=filters*2)
        conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
        conv3 = conv_block(conv2_out, nfilters=filters*4)
        conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
        conv4 = conv_block(conv3_out, nfilters=filters*8)
        conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
        conv4_out = Dropout(0.5)(conv4_out)
        conv5 = conv_block(conv4_out, nfilters=filters*16)
        conv5 = Dropout(0.5)(conv5)
        # up
        deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
        deconv6 = Dropout(0.5)(deconv6)
        deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
        deconv7 = Dropout(0.5)(deconv7)
        deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
        deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
        # output
        output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
        output_layer = BatchNormalization()(output_layer)
        output_layer = Activation('softmax')(output_layer)

        model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
        return model


        Now for the data generators, you can use the builtin ImageDataGenerator class
        here is the code from Keras docs



        # we create two instances with the same arguments
        data_gen_args = dict(featurewise_center=True,
        featurewise_std_normalization=True,
        rotation_range=90,
        width_shift_range=0.1,
        height_shift_range=0.1,
        zoom_range=0.2)
        image_datagen = ImageDataGenerator(**data_gen_args)
        mask_datagen = ImageDataGenerator(**data_gen_args)

        # Provide the same seed and keyword arguments to the fit and flow methods
        seed = 1
        image_datagen.fit(images, augment=True, seed=seed)
        mask_datagen.fit(masks, augment=True, seed=seed)

        image_generator = image_datagen.flow_from_directory(
        'data/images',
        class_mode=None,
        seed=seed)

        mask_generator = mask_datagen.flow_from_directory(
        'data/masks',
        class_mode=None,
        seed=seed)

        # combine generators into one which yields image and masks
        train_generator = zip(image_generator, mask_generator)

        model.fit_generator(
        train_generator,
        steps_per_epoch=2000,
        epochs=50)


        Another way to go is implement your own generator by extending the Sequence class from Keras



        class seg_gen(Sequence):
        def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
        self.x, self.y = x_set, y_set
        self.batch_size = batch_size
        self.samples = len(self.x)
        self.image_dir = image_dir
        self.mask_dir = mask_dir

        def __len__(self):
        return int(np.ceil(len(self.x) / float(self.batch_size)))

        def __getitem__(self, idx):
        idx = np.random.randint(0, self.samples, batch_size)
        batch_x, batch_y = ,
        drawn = 0
        for i in idx:
        _image = image.img_to_array(image.load_img(f'self.image_dir/self.x[i]', target_size=(img_height, img_width)))/255.
        mask = image.img_to_array(image.load_img(f'self.mask_dir/self.y[i]', grayscale=True, target_size=(img_height, img_width)))
        # mask = np.resize(mask,(img_height*img_width, classes))
        batch_y.append(mask)
        batch_x.append(_image)
        return np.array(batch_x), np.array(batch_y)


        Here is a sample code to train the model



        unet = Unet(256, 256, nclasses=66, filters=64)
        print(unet.output_shape)
        p_unet = multi_gpu_model(unet, 4)
        p_unet.load_weights('models-dr/top_weights.h5')
        p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
        tb = TensorBoard(log_dir='logs', write_graph=True)
        mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
        es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
        callbacks = [tb, mc, es]
        train_gen = seg_gen(image_list, mask_list, batch_size)


        p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)


        I have tried using the dice loss when i had only two classes, here is the code for it



        def dice_coeff(y_true, y_pred):
        smooth = 1.
        y_true_f = K.flatten(y_true)
        y_pred_f = K.flatten(y_pred)
        intersection = K.sum(y_true_f * y_pred_f)
        score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
        return score

        def dice_loss(y_true, y_pred):
        loss = 1 - dice_coeff(y_true, y_pred)
        return loss





        share|improve this answer















        i found that Conv2DTranspose works better than UpSampling2D and here is a quick implementation using the same



        def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
        x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
        x = BatchNormalization()(x)
        x = Activation("relu")(x)
        x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
        x = BatchNormalization()(x)
        x = Activation("relu")(x)
        return x


        def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
        y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
        y = concatenate([y, residual], axis=3)
        y = conv_block(y, nfilters)
        return y


        def Unet(img_height, img_width, nclasses=3, filters=64):
        # down
        input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
        conv1 = conv_block(input_layer, nfilters=filters)
        conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
        conv2 = conv_block(conv1_out, nfilters=filters*2)
        conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
        conv3 = conv_block(conv2_out, nfilters=filters*4)
        conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
        conv4 = conv_block(conv3_out, nfilters=filters*8)
        conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
        conv4_out = Dropout(0.5)(conv4_out)
        conv5 = conv_block(conv4_out, nfilters=filters*16)
        conv5 = Dropout(0.5)(conv5)
        # up
        deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
        deconv6 = Dropout(0.5)(deconv6)
        deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
        deconv7 = Dropout(0.5)(deconv7)
        deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
        deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)
        # output
        output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
        output_layer = BatchNormalization()(output_layer)
        output_layer = Activation('softmax')(output_layer)

        model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
        return model


        Now for the data generators, you can use the builtin ImageDataGenerator class
        here is the code from Keras docs



        # we create two instances with the same arguments
        data_gen_args = dict(featurewise_center=True,
        featurewise_std_normalization=True,
        rotation_range=90,
        width_shift_range=0.1,
        height_shift_range=0.1,
        zoom_range=0.2)
        image_datagen = ImageDataGenerator(**data_gen_args)
        mask_datagen = ImageDataGenerator(**data_gen_args)

        # Provide the same seed and keyword arguments to the fit and flow methods
        seed = 1
        image_datagen.fit(images, augment=True, seed=seed)
        mask_datagen.fit(masks, augment=True, seed=seed)

        image_generator = image_datagen.flow_from_directory(
        'data/images',
        class_mode=None,
        seed=seed)

        mask_generator = mask_datagen.flow_from_directory(
        'data/masks',
        class_mode=None,
        seed=seed)

        # combine generators into one which yields image and masks
        train_generator = zip(image_generator, mask_generator)

        model.fit_generator(
        train_generator,
        steps_per_epoch=2000,
        epochs=50)


        Another way to go is implement your own generator by extending the Sequence class from Keras



        class seg_gen(Sequence):
        def __init__(self, x_set, y_set, batch_size, image_dir, mask_dir):
        self.x, self.y = x_set, y_set
        self.batch_size = batch_size
        self.samples = len(self.x)
        self.image_dir = image_dir
        self.mask_dir = mask_dir

        def __len__(self):
        return int(np.ceil(len(self.x) / float(self.batch_size)))

        def __getitem__(self, idx):
        idx = np.random.randint(0, self.samples, batch_size)
        batch_x, batch_y = ,
        drawn = 0
        for i in idx:
        _image = image.img_to_array(image.load_img(f'self.image_dir/self.x[i]', target_size=(img_height, img_width)))/255.
        mask = image.img_to_array(image.load_img(f'self.mask_dir/self.y[i]', grayscale=True, target_size=(img_height, img_width)))
        # mask = np.resize(mask,(img_height*img_width, classes))
        batch_y.append(mask)
        batch_x.append(_image)
        return np.array(batch_x), np.array(batch_y)


        Here is a sample code to train the model



        unet = Unet(256, 256, nclasses=66, filters=64)
        print(unet.output_shape)
        p_unet = multi_gpu_model(unet, 4)
        p_unet.load_weights('models-dr/top_weights.h5')
        p_unet.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
        tb = TensorBoard(log_dir='logs', write_graph=True)
        mc = ModelCheckpoint(mode='max', filepath='models-dr/top_weights.h5', monitor='acc', save_best_only='True', save_weights_only='True', verbose=1)
        es = EarlyStopping(mode='max', monitor='acc', patience=6, verbose=1)
        callbacks = [tb, mc, es]
        train_gen = seg_gen(image_list, mask_list, batch_size)


        p_unet.fit_generator(train_gen, steps_per_epoch=steps, epochs=13, callbacks=callbacks, workers=8)


        I have tried using the dice loss when i had only two classes, here is the code for it



        def dice_coeff(y_true, y_pred):
        smooth = 1.
        y_true_f = K.flatten(y_true)
        y_pred_f = K.flatten(y_pred)
        intersection = K.sum(y_true_f * y_pred_f)
        score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
        return score

        def dice_loss(y_true, y_pred):
        loss = 1 - dice_coeff(y_true, y_pred)
        return loss






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Nov 27 '18 at 16:40

























        answered Nov 17 '18 at 15:58









        Srihari HumbarwadiSrihari Humbarwadi

        305110




        305110





























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53322488%2fimplementing-u-net-for-multi-class-road-segmentation%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            這個網誌中的熱門文章

            How to read a connectionString WITH PROVIDER in .NET Core?

            In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

            Museum of Modern and Contemporary Art of Trento and Rovereto