Bag of words with pySpark reduceByKey










2

















I am trying to do some text mining tasks with pySpark. I am new to Spark and I've been following this example http://mccarroll.net/blog/pyspark2/index.html to build the bag of words for my data.



Originally my data looked something like this



df.show(5)
+------------+---------+----------------+--------------------+
|Title |Month | Author | Document|
+------------+---------+----------------+--------------------+
| a | Jan| John |This is a document |
| b | Feb| Mary |A book by Mary |
| c | Mar| Luke |Newspaper article |
+------------+---------+----------------+--------------------+


So far I have extracted the terms of each document with



bow0 = df.rdd
.map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower())
.flatMap(lambda x: x.split())
.map(lambda x: (x, 1))


Which gives me



[('This', 1),
('is', 1),
('a', 1),
('document', 1)]


But when I try to compute the frequency with reduceByKey and try to see the result



bow0.reduceByKey(lambda x,y:x+y).take(50)


I get this error:



---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-53-966f90775397> in <module>()
----> 1 bow0.reduceByKey(lambda x,y:x+y).take(50)

/usr/local/spark/python/pyspark/rdd.py in take(self, num)
1341
1342 p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
-> 1343 res = self.context.runJob(self, takeUpToNumLeft, p)
1344
1345 items += res

/usr/local/spark/python/pyspark/context.py in runJob(self, rdd, partitionFunc, partitions, allowLocal)
990 # SparkContext#runJob.
991 mappedRDD = rdd.mapPartitions(partitionFunc)
--> 992 port = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
993 return list(_load_from_socket(port, mappedRDD._jrdd_deserializer))
994

/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:

/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()

/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling 012.n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 31.0 failed 4 times, most recent failure: Lost task 1.3 in stage 31.0 (TID 84, 9.242.64.15, executor 7): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 177, in main
process()
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 172, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 346, in func
return f(iterator)
File "/usr/local/spark/python/pyspark/rdd.py", line 1842, in combineLocally
merger.mergeValues(iterator)
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/shuffle.py", line 236, in mergeValues
for k, v in iterator:
File "<ipython-input-48-5c0753c6b152>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'replace'

at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:404)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1517)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1505)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1504)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1504)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1732)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1687)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1676)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069)
at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:455)
at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 177, in main
process()
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 172, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 346, in func
return f(iterator)
File "/usr/local/spark/python/pyspark/rdd.py", line 1842, in combineLocally
merger.mergeValues(iterator)
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/shuffle.py", line 236, in mergeValues
for k, v in iterator:
File "<ipython-input-48-5c0753c6b152>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'replace'

at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:404)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more









share|improve this question
























  • The error you have AttributeError: 'NoneType' object has no attribute 'replace' means that somewhere .replace is being called on None. There is only one place that this could happen, so this means you have some null values in your Document column. The quickest modification to your code would be to change your map function to the following: .map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower() if x.Document else '') or add a .filter(lambda x: x.Document is not None) before calling map

    – pault
    Nov 15 '18 at 14:38
















2

















I am trying to do some text mining tasks with pySpark. I am new to Spark and I've been following this example http://mccarroll.net/blog/pyspark2/index.html to build the bag of words for my data.



Originally my data looked something like this



df.show(5)
+------------+---------+----------------+--------------------+
|Title |Month | Author | Document|
+------------+---------+----------------+--------------------+
| a | Jan| John |This is a document |
| b | Feb| Mary |A book by Mary |
| c | Mar| Luke |Newspaper article |
+------------+---------+----------------+--------------------+


So far I have extracted the terms of each document with



bow0 = df.rdd
.map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower())
.flatMap(lambda x: x.split())
.map(lambda x: (x, 1))


Which gives me



[('This', 1),
('is', 1),
('a', 1),
('document', 1)]


But when I try to compute the frequency with reduceByKey and try to see the result



bow0.reduceByKey(lambda x,y:x+y).take(50)


I get this error:



---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-53-966f90775397> in <module>()
----> 1 bow0.reduceByKey(lambda x,y:x+y).take(50)

/usr/local/spark/python/pyspark/rdd.py in take(self, num)
1341
1342 p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
-> 1343 res = self.context.runJob(self, takeUpToNumLeft, p)
1344
1345 items += res

/usr/local/spark/python/pyspark/context.py in runJob(self, rdd, partitionFunc, partitions, allowLocal)
990 # SparkContext#runJob.
991 mappedRDD = rdd.mapPartitions(partitionFunc)
--> 992 port = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
993 return list(_load_from_socket(port, mappedRDD._jrdd_deserializer))
994

/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:

/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()

/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling 012.n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 31.0 failed 4 times, most recent failure: Lost task 1.3 in stage 31.0 (TID 84, 9.242.64.15, executor 7): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 177, in main
process()
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 172, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 346, in func
return f(iterator)
File "/usr/local/spark/python/pyspark/rdd.py", line 1842, in combineLocally
merger.mergeValues(iterator)
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/shuffle.py", line 236, in mergeValues
for k, v in iterator:
File "<ipython-input-48-5c0753c6b152>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'replace'

at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:404)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1517)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1505)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1504)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1504)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1732)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1687)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1676)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069)
at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:455)
at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 177, in main
process()
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 172, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 346, in func
return f(iterator)
File "/usr/local/spark/python/pyspark/rdd.py", line 1842, in combineLocally
merger.mergeValues(iterator)
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/shuffle.py", line 236, in mergeValues
for k, v in iterator:
File "<ipython-input-48-5c0753c6b152>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'replace'

at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:404)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more









share|improve this question
























  • The error you have AttributeError: 'NoneType' object has no attribute 'replace' means that somewhere .replace is being called on None. There is only one place that this could happen, so this means you have some null values in your Document column. The quickest modification to your code would be to change your map function to the following: .map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower() if x.Document else '') or add a .filter(lambda x: x.Document is not None) before calling map

    – pault
    Nov 15 '18 at 14:38














2












2








2










I am trying to do some text mining tasks with pySpark. I am new to Spark and I've been following this example http://mccarroll.net/blog/pyspark2/index.html to build the bag of words for my data.



Originally my data looked something like this



df.show(5)
+------------+---------+----------------+--------------------+
|Title |Month | Author | Document|
+------------+---------+----------------+--------------------+
| a | Jan| John |This is a document |
| b | Feb| Mary |A book by Mary |
| c | Mar| Luke |Newspaper article |
+------------+---------+----------------+--------------------+


So far I have extracted the terms of each document with



bow0 = df.rdd
.map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower())
.flatMap(lambda x: x.split())
.map(lambda x: (x, 1))


Which gives me



[('This', 1),
('is', 1),
('a', 1),
('document', 1)]


But when I try to compute the frequency with reduceByKey and try to see the result



bow0.reduceByKey(lambda x,y:x+y).take(50)


I get this error:



---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-53-966f90775397> in <module>()
----> 1 bow0.reduceByKey(lambda x,y:x+y).take(50)

/usr/local/spark/python/pyspark/rdd.py in take(self, num)
1341
1342 p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
-> 1343 res = self.context.runJob(self, takeUpToNumLeft, p)
1344
1345 items += res

/usr/local/spark/python/pyspark/context.py in runJob(self, rdd, partitionFunc, partitions, allowLocal)
990 # SparkContext#runJob.
991 mappedRDD = rdd.mapPartitions(partitionFunc)
--> 992 port = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
993 return list(_load_from_socket(port, mappedRDD._jrdd_deserializer))
994

/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:

/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()

/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling 012.n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 31.0 failed 4 times, most recent failure: Lost task 1.3 in stage 31.0 (TID 84, 9.242.64.15, executor 7): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 177, in main
process()
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 172, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 346, in func
return f(iterator)
File "/usr/local/spark/python/pyspark/rdd.py", line 1842, in combineLocally
merger.mergeValues(iterator)
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/shuffle.py", line 236, in mergeValues
for k, v in iterator:
File "<ipython-input-48-5c0753c6b152>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'replace'

at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:404)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1517)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1505)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1504)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1504)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1732)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1687)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1676)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069)
at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:455)
at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 177, in main
process()
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 172, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 346, in func
return f(iterator)
File "/usr/local/spark/python/pyspark/rdd.py", line 1842, in combineLocally
merger.mergeValues(iterator)
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/shuffle.py", line 236, in mergeValues
for k, v in iterator:
File "<ipython-input-48-5c0753c6b152>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'replace'

at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:404)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more









share|improve this question


















I am trying to do some text mining tasks with pySpark. I am new to Spark and I've been following this example http://mccarroll.net/blog/pyspark2/index.html to build the bag of words for my data.



Originally my data looked something like this



df.show(5)
+------------+---------+----------------+--------------------+
|Title |Month | Author | Document|
+------------+---------+----------------+--------------------+
| a | Jan| John |This is a document |
| b | Feb| Mary |A book by Mary |
| c | Mar| Luke |Newspaper article |
+------------+---------+----------------+--------------------+


So far I have extracted the terms of each document with



bow0 = df.rdd
.map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower())
.flatMap(lambda x: x.split())
.map(lambda x: (x, 1))


Which gives me



[('This', 1),
('is', 1),
('a', 1),
('document', 1)]


But when I try to compute the frequency with reduceByKey and try to see the result



bow0.reduceByKey(lambda x,y:x+y).take(50)


I get this error:



---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-53-966f90775397> in <module>()
----> 1 bow0.reduceByKey(lambda x,y:x+y).take(50)

/usr/local/spark/python/pyspark/rdd.py in take(self, num)
1341
1342 p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
-> 1343 res = self.context.runJob(self, takeUpToNumLeft, p)
1344
1345 items += res

/usr/local/spark/python/pyspark/context.py in runJob(self, rdd, partitionFunc, partitions, allowLocal)
990 # SparkContext#runJob.
991 mappedRDD = rdd.mapPartitions(partitionFunc)
--> 992 port = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
993 return list(_load_from_socket(port, mappedRDD._jrdd_deserializer))
994

/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py in __call__(self, *args)
1131 answer = self.gateway_client.send_command(command)
1132 return_value = get_return_value(
-> 1133 answer, self.gateway_client, self.target_id, self.name)
1134
1135 for temp_arg in temp_args:

/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()

/usr/local/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
317 raise Py4JJavaError(
318 "An error occurred while calling 012.n".
--> 319 format(target_id, ".", name), value)
320 else:
321 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 31.0 failed 4 times, most recent failure: Lost task 1.3 in stage 31.0 (TID 84, 9.242.64.15, executor 7): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 177, in main
process()
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 172, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 346, in func
return f(iterator)
File "/usr/local/spark/python/pyspark/rdd.py", line 1842, in combineLocally
merger.mergeValues(iterator)
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/shuffle.py", line 236, in mergeValues
for k, v in iterator:
File "<ipython-input-48-5c0753c6b152>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'replace'

at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:404)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1517)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1505)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1504)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1504)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1732)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1687)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1676)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069)
at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:455)
at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 177, in main
process()
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/worker.py", line 172, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 2423, in pipeline_func
return func(split, prev_func(split, iterator))
File "/usr/local/spark/python/pyspark/rdd.py", line 346, in func
return f(iterator)
File "/usr/local/spark/python/pyspark/rdd.py", line 1842, in combineLocally
merger.mergeValues(iterator)
File "/usr/local/spark/python/lib/pyspark.zip/pyspark/shuffle.py", line 236, in mergeValues
for k, v in iterator:
File "<ipython-input-48-5c0753c6b152>", line 1, in <lambda>
AttributeError: 'NoneType' object has no attribute 'replace'

at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:234)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:404)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more






pyspark rdd reduce






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 15 '18 at 15:14









pault

16.2k32652




16.2k32652










asked Nov 15 '18 at 13:42









Catalina HerreraCatalina Herrera

132




132












  • The error you have AttributeError: 'NoneType' object has no attribute 'replace' means that somewhere .replace is being called on None. There is only one place that this could happen, so this means you have some null values in your Document column. The quickest modification to your code would be to change your map function to the following: .map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower() if x.Document else '') or add a .filter(lambda x: x.Document is not None) before calling map

    – pault
    Nov 15 '18 at 14:38


















  • The error you have AttributeError: 'NoneType' object has no attribute 'replace' means that somewhere .replace is being called on None. There is only one place that this could happen, so this means you have some null values in your Document column. The quickest modification to your code would be to change your map function to the following: .map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower() if x.Document else '') or add a .filter(lambda x: x.Document is not None) before calling map

    – pault
    Nov 15 '18 at 14:38

















The error you have AttributeError: 'NoneType' object has no attribute 'replace' means that somewhere .replace is being called on None. There is only one place that this could happen, so this means you have some null values in your Document column. The quickest modification to your code would be to change your map function to the following: .map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower() if x.Document else '') or add a .filter(lambda x: x.Document is not None) before calling map

– pault
Nov 15 '18 at 14:38






The error you have AttributeError: 'NoneType' object has no attribute 'replace' means that somewhere .replace is being called on None. There is only one place that this could happen, so this means you have some null values in your Document column. The quickest modification to your code would be to change your map function to the following: .map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower() if x.Document else '') or add a .filter(lambda x: x.Document is not None) before calling map

– pault
Nov 15 '18 at 14:38













1 Answer
1






active

oldest

votes


















1
















To expand on my comment, the error you are receiving is due to the presence of a null value in your Document column. Here's a small example to demonstrate:



data = [
['a', 'Jan', 'John', 'This is a document'],
['b', 'Feb', 'Mary', 'A book by Mary'],
['c', 'Mar', 'Luke', 'Newspaper article'],
['d', 'Apr', 'Mark', None]
]
columns = ['Title', 'Month', 'Author', 'Document']
df = spark.createDataFrame(data, columns)
df.show()
#+-----+-----+------+------------------+
#|Title|Month|Author| Document|
#+-----+-----+------+------------------+
#| a| Jan| John|This is a document|
#| b| Feb| Mary| A book by Mary|
#| c| Mar| Luke| Newspaper article|
#| d| Apr| Mark| null|
#+-----+-----+------+------------------+


For the last row, the value in the Document column is null. When you compute bow0 as in your question, when the map function operates on that row it tries to call x.Document.replace where x is None. This results in AttributeError: 'NoneType' object has no attribute 'replace'.



One way to overcome this is to filter out the bad values before calling map:



bow0 = df.rdd
.filter(lambda x: x.Document)
.map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower())
.flatMap(lambda x: x.split())
.map(lambda x: (x, 1))
bow0.reduceByKey(lambda x,y:x+y).take(50)
#[(u'a', 2),
# (u'this', 1),
# (u'is', 1),
# (u'newspaper', 1),
# (u'article', 1),
# (u'by', 1),
# (u'book', 1),
# (u'mary', 1),
# (u'document', 1)]


Or you can build in the check for None condition inside of your map function. In general, it is good practice to make your map function robust to bad inputs.




As an aside, you can do the same thing using the DataFrame API functions. In this case:



from pyspark.sql.functions import explode, split, regexp_replace, col, lower
df.select(explode(split(regexp_replace("Document", "[,.-]", " "), "s+")).alias("word"))
.groupby(lower(col("word")).alias("lower"))
.count()
.show()
#+---------+-----+
#| lower|count|
#+---------+-----+
#| document| 1|
#| by| 1|
#|newspaper| 1|
#| article| 1|
#| mary| 1|
#| is| 1|
#| a| 2|
#| this| 1|
#| book| 1|
#+---------+-----+





share|improve this answer

























  • Indeed that was the problema with my data... I've cleaned it up and now it's working perfectly. Thanks for your help

    – Catalina Herrera
    Nov 15 '18 at 15:36











Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53320803%2fbag-of-words-with-pyspark-reducebykey%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1
















To expand on my comment, the error you are receiving is due to the presence of a null value in your Document column. Here's a small example to demonstrate:



data = [
['a', 'Jan', 'John', 'This is a document'],
['b', 'Feb', 'Mary', 'A book by Mary'],
['c', 'Mar', 'Luke', 'Newspaper article'],
['d', 'Apr', 'Mark', None]
]
columns = ['Title', 'Month', 'Author', 'Document']
df = spark.createDataFrame(data, columns)
df.show()
#+-----+-----+------+------------------+
#|Title|Month|Author| Document|
#+-----+-----+------+------------------+
#| a| Jan| John|This is a document|
#| b| Feb| Mary| A book by Mary|
#| c| Mar| Luke| Newspaper article|
#| d| Apr| Mark| null|
#+-----+-----+------+------------------+


For the last row, the value in the Document column is null. When you compute bow0 as in your question, when the map function operates on that row it tries to call x.Document.replace where x is None. This results in AttributeError: 'NoneType' object has no attribute 'replace'.



One way to overcome this is to filter out the bad values before calling map:



bow0 = df.rdd
.filter(lambda x: x.Document)
.map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower())
.flatMap(lambda x: x.split())
.map(lambda x: (x, 1))
bow0.reduceByKey(lambda x,y:x+y).take(50)
#[(u'a', 2),
# (u'this', 1),
# (u'is', 1),
# (u'newspaper', 1),
# (u'article', 1),
# (u'by', 1),
# (u'book', 1),
# (u'mary', 1),
# (u'document', 1)]


Or you can build in the check for None condition inside of your map function. In general, it is good practice to make your map function robust to bad inputs.




As an aside, you can do the same thing using the DataFrame API functions. In this case:



from pyspark.sql.functions import explode, split, regexp_replace, col, lower
df.select(explode(split(regexp_replace("Document", "[,.-]", " "), "s+")).alias("word"))
.groupby(lower(col("word")).alias("lower"))
.count()
.show()
#+---------+-----+
#| lower|count|
#+---------+-----+
#| document| 1|
#| by| 1|
#|newspaper| 1|
#| article| 1|
#| mary| 1|
#| is| 1|
#| a| 2|
#| this| 1|
#| book| 1|
#+---------+-----+





share|improve this answer

























  • Indeed that was the problema with my data... I've cleaned it up and now it's working perfectly. Thanks for your help

    – Catalina Herrera
    Nov 15 '18 at 15:36
















1
















To expand on my comment, the error you are receiving is due to the presence of a null value in your Document column. Here's a small example to demonstrate:



data = [
['a', 'Jan', 'John', 'This is a document'],
['b', 'Feb', 'Mary', 'A book by Mary'],
['c', 'Mar', 'Luke', 'Newspaper article'],
['d', 'Apr', 'Mark', None]
]
columns = ['Title', 'Month', 'Author', 'Document']
df = spark.createDataFrame(data, columns)
df.show()
#+-----+-----+------+------------------+
#|Title|Month|Author| Document|
#+-----+-----+------+------------------+
#| a| Jan| John|This is a document|
#| b| Feb| Mary| A book by Mary|
#| c| Mar| Luke| Newspaper article|
#| d| Apr| Mark| null|
#+-----+-----+------+------------------+


For the last row, the value in the Document column is null. When you compute bow0 as in your question, when the map function operates on that row it tries to call x.Document.replace where x is None. This results in AttributeError: 'NoneType' object has no attribute 'replace'.



One way to overcome this is to filter out the bad values before calling map:



bow0 = df.rdd
.filter(lambda x: x.Document)
.map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower())
.flatMap(lambda x: x.split())
.map(lambda x: (x, 1))
bow0.reduceByKey(lambda x,y:x+y).take(50)
#[(u'a', 2),
# (u'this', 1),
# (u'is', 1),
# (u'newspaper', 1),
# (u'article', 1),
# (u'by', 1),
# (u'book', 1),
# (u'mary', 1),
# (u'document', 1)]


Or you can build in the check for None condition inside of your map function. In general, it is good practice to make your map function robust to bad inputs.




As an aside, you can do the same thing using the DataFrame API functions. In this case:



from pyspark.sql.functions import explode, split, regexp_replace, col, lower
df.select(explode(split(regexp_replace("Document", "[,.-]", " "), "s+")).alias("word"))
.groupby(lower(col("word")).alias("lower"))
.count()
.show()
#+---------+-----+
#| lower|count|
#+---------+-----+
#| document| 1|
#| by| 1|
#|newspaper| 1|
#| article| 1|
#| mary| 1|
#| is| 1|
#| a| 2|
#| this| 1|
#| book| 1|
#+---------+-----+





share|improve this answer

























  • Indeed that was the problema with my data... I've cleaned it up and now it's working perfectly. Thanks for your help

    – Catalina Herrera
    Nov 15 '18 at 15:36














1












1








1









To expand on my comment, the error you are receiving is due to the presence of a null value in your Document column. Here's a small example to demonstrate:



data = [
['a', 'Jan', 'John', 'This is a document'],
['b', 'Feb', 'Mary', 'A book by Mary'],
['c', 'Mar', 'Luke', 'Newspaper article'],
['d', 'Apr', 'Mark', None]
]
columns = ['Title', 'Month', 'Author', 'Document']
df = spark.createDataFrame(data, columns)
df.show()
#+-----+-----+------+------------------+
#|Title|Month|Author| Document|
#+-----+-----+------+------------------+
#| a| Jan| John|This is a document|
#| b| Feb| Mary| A book by Mary|
#| c| Mar| Luke| Newspaper article|
#| d| Apr| Mark| null|
#+-----+-----+------+------------------+


For the last row, the value in the Document column is null. When you compute bow0 as in your question, when the map function operates on that row it tries to call x.Document.replace where x is None. This results in AttributeError: 'NoneType' object has no attribute 'replace'.



One way to overcome this is to filter out the bad values before calling map:



bow0 = df.rdd
.filter(lambda x: x.Document)
.map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower())
.flatMap(lambda x: x.split())
.map(lambda x: (x, 1))
bow0.reduceByKey(lambda x,y:x+y).take(50)
#[(u'a', 2),
# (u'this', 1),
# (u'is', 1),
# (u'newspaper', 1),
# (u'article', 1),
# (u'by', 1),
# (u'book', 1),
# (u'mary', 1),
# (u'document', 1)]


Or you can build in the check for None condition inside of your map function. In general, it is good practice to make your map function robust to bad inputs.




As an aside, you can do the same thing using the DataFrame API functions. In this case:



from pyspark.sql.functions import explode, split, regexp_replace, col, lower
df.select(explode(split(regexp_replace("Document", "[,.-]", " "), "s+")).alias("word"))
.groupby(lower(col("word")).alias("lower"))
.count()
.show()
#+---------+-----+
#| lower|count|
#+---------+-----+
#| document| 1|
#| by| 1|
#|newspaper| 1|
#| article| 1|
#| mary| 1|
#| is| 1|
#| a| 2|
#| this| 1|
#| book| 1|
#+---------+-----+





share|improve this answer

















To expand on my comment, the error you are receiving is due to the presence of a null value in your Document column. Here's a small example to demonstrate:



data = [
['a', 'Jan', 'John', 'This is a document'],
['b', 'Feb', 'Mary', 'A book by Mary'],
['c', 'Mar', 'Luke', 'Newspaper article'],
['d', 'Apr', 'Mark', None]
]
columns = ['Title', 'Month', 'Author', 'Document']
df = spark.createDataFrame(data, columns)
df.show()
#+-----+-----+------+------------------+
#|Title|Month|Author| Document|
#+-----+-----+------+------------------+
#| a| Jan| John|This is a document|
#| b| Feb| Mary| A book by Mary|
#| c| Mar| Luke| Newspaper article|
#| d| Apr| Mark| null|
#+-----+-----+------+------------------+


For the last row, the value in the Document column is null. When you compute bow0 as in your question, when the map function operates on that row it tries to call x.Document.replace where x is None. This results in AttributeError: 'NoneType' object has no attribute 'replace'.



One way to overcome this is to filter out the bad values before calling map:



bow0 = df.rdd
.filter(lambda x: x.Document)
.map( lambda x: x.Document.replace(',',' ').replace('.',' ').replace('-',' ').lower())
.flatMap(lambda x: x.split())
.map(lambda x: (x, 1))
bow0.reduceByKey(lambda x,y:x+y).take(50)
#[(u'a', 2),
# (u'this', 1),
# (u'is', 1),
# (u'newspaper', 1),
# (u'article', 1),
# (u'by', 1),
# (u'book', 1),
# (u'mary', 1),
# (u'document', 1)]


Or you can build in the check for None condition inside of your map function. In general, it is good practice to make your map function robust to bad inputs.




As an aside, you can do the same thing using the DataFrame API functions. In this case:



from pyspark.sql.functions import explode, split, regexp_replace, col, lower
df.select(explode(split(regexp_replace("Document", "[,.-]", " "), "s+")).alias("word"))
.groupby(lower(col("word")).alias("lower"))
.count()
.show()
#+---------+-----+
#| lower|count|
#+---------+-----+
#| document| 1|
#| by| 1|
#|newspaper| 1|
#| article| 1|
#| mary| 1|
#| is| 1|
#| a| 2|
#| this| 1|
#| book| 1|
#+---------+-----+






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 15 '18 at 15:31

























answered Nov 15 '18 at 15:11









paultpault

16.2k32652




16.2k32652












  • Indeed that was the problema with my data... I've cleaned it up and now it's working perfectly. Thanks for your help

    – Catalina Herrera
    Nov 15 '18 at 15:36


















  • Indeed that was the problema with my data... I've cleaned it up and now it's working perfectly. Thanks for your help

    – Catalina Herrera
    Nov 15 '18 at 15:36

















Indeed that was the problema with my data... I've cleaned it up and now it's working perfectly. Thanks for your help

– Catalina Herrera
Nov 15 '18 at 15:36






Indeed that was the problema with my data... I've cleaned it up and now it's working perfectly. Thanks for your help

– Catalina Herrera
Nov 15 '18 at 15:36




















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53320803%2fbag-of-words-with-pyspark-reducebykey%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

Museum of Modern and Contemporary Art of Trento and Rovereto