Degree of a continuous mapping





A degree two map of a sphere onto itself.


In topology, the degree of a continuous mapping between two compact oriented manifolds of the same dimension is a number that represents the number of times that the domain manifold wraps around the range manifold under the mapping. The degree is always an integer, but may be positive or negative depending on the orientations.


The degree of a map was first defined by Brouwer,[1] who showed that the degree is homotopy invariant (invariant among homotopies), and used it to prove the Brouwer fixed point theorem. In modern mathematics, the degree of a map plays an important role in topology and geometry. In physics, the degree of a continuous map (for instance a map from space to some order parameter set) is one example of a topological quantum number.




Contents





  • 1 Definitions of the degree

    • 1.1 From Sn to Sn


    • 1.2 Between manifolds

      • 1.2.1 Algebraic topology


      • 1.2.2 Differential topology



    • 1.3 Maps from closed region



  • 2 Properties


  • 3 See also


  • 4 Notes


  • 5 References


  • 6 External links




Definitions of the degree



From Sn to Sn


The simplest and most important case is the degree of a continuous map from the ndisplaystyle nn-sphere Sndisplaystyle S^nS^n to itself (in the case n=1displaystyle n=1n=1, this is called the winding number):


Let f:Sn→Sndisplaystyle fcolon S^nto S^nfcolon S^nto S^n be a continuous map. Then fdisplaystyle ff induces a homomorphism f∗:Hn(Sn)→Hn(Sn)displaystyle f_*colon H_nleft(S^nright)to H_nleft(S^nright)f_*colon H_nleft(S^nright)to H_nleft(S^nright), where Hn(⋅)displaystyle H_nleft(cdot right)H_nleft(cdot right) is the ndisplaystyle nnth homology group. Considering the fact that Hn(Sn)≅Zdisplaystyle H_nleft(S^nright)cong mathbb Z H_nleft(S^nright)cong mathbb Z, we see that f∗displaystyle f_*f_* must be of the form f∗:x↦αxdisplaystyle f_*colon xmapsto alpha xf_*colon xmapsto alpha x for some fixed α∈Zdisplaystyle alpha in mathbb Z alpha in mathbb Z.
This αdisplaystyle alpha alpha is then called the degree of fdisplaystyle ff.



Between manifolds



Algebraic topology


Let X and Y be closed connected oriented m-dimensional manifolds. Orientability of a manifold implies that its top homology group is isomorphic to Z. Choosing an orientation means choosing a generator of the top homology group.


A continuous map f : XY induces a homomorphism f* from Hm(X) to Hm(Y). Let [X], resp. [Y] be the chosen generator of Hm(X), resp. Hm(Y) (or the fundamental class of X, Y). Then the degree of f is defined to be f*([X]). In other words,


f∗([X])=deg⁡(f)[Y].displaystyle f_*([X])=deg(f)[Y],.f_*([X])=deg(f)[Y],.

If y in Y and f −1(y) is a finite set, the degree of f can be computed by considering the m-th local homology groups of X at each point in f −1(y).



Differential topology


In the language of differential topology, the degree of a smooth map can be defined as follows: If f is a smooth map whose domain is a compact manifold and p is a regular value of f, consider the finite set


f−1(p)=x1,x2,…,xn.displaystyle f^-1(p)=x_1,x_2,ldots ,x_n,.f^-1(p)=x_1,x_2,ldots ,x_n,.

By p being a regular value, in a neighborhood of each xi the map f is a local diffeomorphism (it is a covering map). Diffeomorphisms can be either orientation preserving or orientation reversing. Let r be the number of points xi at which f is orientation preserving and s be the number at which f is orientation reversing. When the domain of f is connected, the number r − s is independent of the choice of p (though n is not!) and one defines the degree of f to be r − s. This definition coincides with the algebraic topological definition above.


The same definition works for compact manifolds with boundary but then f should send the boundary of X to the boundary of Y.


One can also define degree modulo 2 (deg2(f)) the same way as before but taking the fundamental class in Z2 homology. In this case deg2(f) is an element of Z2 (the field with two elements), the manifolds need not be orientable and if n is the number of preimages of p as before then deg2(f) is n modulo 2.


Integration of differential forms gives a pairing between (C-)singular homology and de Rham cohomology: ⟨c,ω⟩=∫cωdisplaystyle langle c,omega rangle =int _comega displaystyle langle c,omega rangle =int _comega , where cdisplaystyle cc is a homology class represented by a cycle cdisplaystyle cc and ωdisplaystyle omega omega a closed form representing a de Rham cohomology class. For a smooth map f : XY between orientable m-manifolds, one has


⟨f∗[c],[ω]⟩=⟨[c],f∗[ω]⟩,displaystyle langle f_*[c],[omega ]rangle =langle [c],f^*[omega ]rangle ,langle f_*[c],[omega ]rangle =langle [c],f^*[omega ]rangle ,

where f* and f* are induced maps on chains and forms respectively. Since f*[X] = deg f · [Y], we have


deg⁡f∫Yω=∫Xf∗ωdisplaystyle deg fint _Yomega =int _Xf^*omega ,deg fint _Yomega =int _Xf^*omega ,

for any m-form ω on Y.



Maps from closed region


If Ω⊂Rndisplaystyle Omega subset mathbb R ^nOmega subset mathbbR ^nis a bounded region, f:Ω¯→Rndisplaystyle f:bar Omega to mathbb R ^nf:bar Omega to mathbbR ^n smooth, pdisplaystyle pp a regular value of fdisplaystyle ff and
p∉f(∂Ω)displaystyle pnotin f(partial Omega )pnotin f(partial Omega ), then the degree deg⁡(f,Ω,p)displaystyle deg(f,Omega ,p)deg(f,Omega ,p) is defined
by the formula


deg⁡(f,Ω,p):=∑y∈f−1(p)sgn⁡detDf(y)displaystyle deg(f,Omega ,p):=sum _yin f^-1(p)operatorname sgn det Df(y)deg(f,Omega ,p):=sum _yin f^-1(p)operatornamesgn det Df(y)

where Df(y)displaystyle Df(y)Df(y) is the Jacobi matrix of fdisplaystyle ff in ydisplaystyle yy.
This definition of the degree may be naturally extended for non-regular values pdisplaystyle pp such that deg⁡(f,Ω,p)=deg⁡(f,Ω,p′)displaystyle deg(f,Omega ,p)=deg(f,Omega ,p')deg(f,Omega ,p)=deg(f,Omega ,p') where p′displaystyle p'p' is a point close to pdisplaystyle pp.


The degree satisfies the following properties:[2]


  • If deg⁡(f,Ω¯,p)≠0displaystyle deg(f,bar Omega ,p)neq 0deg(f,bar Omega ,p)neq 0, then there exists x∈Ωdisplaystyle xin Omega xin Omega such that f(x)=pdisplaystyle f(x)=pf(x)=p.


  • deg⁡(id,Ω,y)=1displaystyle deg(operatorname id ,Omega ,y)=1deg(operatorname id,Omega ,y)=1 for all y∈Ωdisplaystyle yin Omega yin Omega .

  • Decomposition property:


deg⁡(f,Ω,y)=deg⁡(f,Ω1,y)+deg⁡(f,Ω2,y)displaystyle deg(f,Omega ,y)=deg(f,Omega _1,y)+deg(f,Omega _2,y)deg(f,Omega ,y)=deg(f,Omega _1,y)+deg(f,Omega _2,y), if Ω1,Ω2displaystyle Omega _1,Omega _2Omega _1,Omega _2 are disjoint parts of Ω=Ω1∪Ω2displaystyle Omega =Omega _1cup Omega _2Omega =Omega _1cup Omega _2 and y∉f(Ω¯∖(Ω1∪Ω2))displaystyle ynot in f(overline Omega setminus (Omega _1cup Omega _2))ynot in f(overline Omega setminus (Omega _1cup Omega _2)).

  • Homotopy invariance: If fdisplaystyle ff and gdisplaystyle gg are homotopy equivalent via a homotopy F(t)displaystyle F(t)F(t) such that F(0)=f,F(1)=gdisplaystyle F(0)=f,,F(1)=gF(0)=f,,F(1)=g and p∉F(t)(∂Ω)displaystyle pnotin F(t)(partial Omega )pnotin F(t)(partial Omega ), then deg⁡(f,Ω,p)=deg⁡(g,Ω,p)displaystyle deg(f,Omega ,p)=deg(g,Omega ,p)deg(f,Omega ,p)=deg(g,Omega ,p)

  • The function p↦deg⁡(f,Ω,p)displaystyle pmapsto deg(f,Omega ,p)pmapsto deg(f,Omega ,p) is locally constant on Rn−f(∂Ω)displaystyle mathbb R ^n-f(partial Omega )mathbbR ^n-f(partial Omega )

These properties characterise the degree uniquely and the degree may be defined by them in an axiomatic way.


In a similar way, we could define the degree of a map between compact oriented manifolds with boundary.



Properties


The degree of a map is a homotopy invariant; moreover for continuous maps from the sphere to itself it is a complete homotopy invariant, i.e. two maps f,g:Sn→Sndisplaystyle f,g:S^nto S^n,f,g:S^nto S^n, are homotopic if and only if deg⁡(f)=deg⁡(g)displaystyle deg(f)=deg(g)deg(f)=deg(g).


In other words, degree is an isomorphism between [Sn,Sn]=πnSndisplaystyle [S^n,S^n]=pi _nS^ndisplaystyle [S^n,S^n]=pi _nS^n and Zdisplaystyle mathbf Z mathbf Z .


Moreover, the Hopf theorem states that for any ndisplaystyle nn-dimensional closed oriented manifold M, two maps f,g:M→Sndisplaystyle f,g:Mto S^nf,g:Mto S^n are homotopic if and only if deg⁡(f)=deg⁡(g).displaystyle deg(f)=deg(g).deg(f)=deg(g).


A self-map f:Sn→Sndisplaystyle f:S^nto S^nf:S^nto S^n of the n-sphere is extendable to a map F:Bn→Sndisplaystyle F:B_nto S^nF:B_nto S^n from the n-ball to the n-sphere if and only if deg⁡(f)=0displaystyle deg(f)=0deg(f)=0. (Here the function F extends f in the sense that f is the restriction of F to Sndisplaystyle S^nS^n.)



See also



  • Covering number, a similarly named term. Note that it does not generalize the winding number but describes covers of a set by balls


  • Density (polytope), a polyhedral analog

  • Topological degree theory


Notes




  1. ^ Brouwer, L. E. J. (1911). "Über Abbildung von Mannigfaltigkeiten". Mathematische Annalen. 71 (1): 97–115. doi:10.1007/bf01456931..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ Dancer, E. N. (2000). Calculus of Variations and Partial Differential Equations. Springer-Verlag. pp. 185–225. ISBN 3-540-64803-8.




References



  • Flanders, H. (1989). Differential forms with applications to the physical sciences. Dover.


  • Hirsch, M. (1976). Differential topology. Springer-Verlag. ISBN 0-387-90148-5.


  • Milnor, J.W. (1997). Topology from the Differentiable Viewpoint. Princeton University Press. ISBN 978-0-691-04833-8.


  • Outerelo, E.; Ruiz, J.M. (2009). Mapping Degree Theory. American Mathematical Society. ISBN 978-0-8218-4915-6.


External links



  • Hazewinkel, Michiel, ed. (2001) [1994], "Brouwer degree", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4


  • TopDeg: Software tool for computing the topological degree of a continuous function (LGPL-3)


這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

Museum of Modern and Contemporary Art of Trento and Rovereto