Keras finetunning InceptionV3 tensor dimension error










0















I am trying to finetune a model in Keras:



 inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150, 
150, 1))

x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)


####training training training ... save weights


classifier.load_weights("saved_weights.h5")

classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3

x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)


But I get the error:



ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2









share|improve this question
























  • What's the shape of the input data you are giving to this model?

    – Matias Valdenegro
    Nov 15 '18 at 6:33















0















I am trying to finetune a model in Keras:



 inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150, 
150, 1))

x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)


####training training training ... save weights


classifier.load_weights("saved_weights.h5")

classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3

x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)


But I get the error:



ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2









share|improve this question
























  • What's the shape of the input data you are giving to this model?

    – Matias Valdenegro
    Nov 15 '18 at 6:33













0












0








0








I am trying to finetune a model in Keras:



 inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150, 
150, 1))

x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)


####training training training ... save weights


classifier.load_weights("saved_weights.h5")

classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3

x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)


But I get the error:



ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2









share|improve this question
















I am trying to finetune a model in Keras:



 inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150, 
150, 1))

x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)


####training training training ... save weights


classifier.load_weights("saved_weights.h5")

classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3

x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)


But I get the error:



ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2






python machine-learning keras deep-learning finetunning






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 15 '18 at 13:40









today

11k22038




11k22038










asked Nov 15 '18 at 3:30









Boris MocialovBoris Mocialov

2,58811547




2,58811547












  • What's the shape of the input data you are giving to this model?

    – Matias Valdenegro
    Nov 15 '18 at 6:33

















  • What's the shape of the input data you are giving to this model?

    – Matias Valdenegro
    Nov 15 '18 at 6:33
















What's the shape of the input data you are giving to this model?

– Matias Valdenegro
Nov 15 '18 at 6:33





What's the shape of the input data you are giving to this model?

– Matias Valdenegro
Nov 15 '18 at 6:33












1 Answer
1






active

oldest

votes


















0














You shouldn't use pop() method on models created using functional API (i.e. keras.models.Model). Only Sequential models (i.e. keras.models.Sequential) have a built-in pop() method (usage: model.pop()). Instead, use index or the names of the layers to access a specific layer:



classifier.load_weights("saved_weights.h5")
x = classifier.layers[-5].output # use index of the layer directly
x = GlobalAveragePooling2D()(x)





share|improve this answer






















    Your Answer






    StackExchange.ifUsing("editor", function ()
    StackExchange.using("externalEditor", function ()
    StackExchange.using("snippets", function ()
    StackExchange.snippets.init();
    );
    );
    , "code-snippets");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "1"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53312025%2fkeras-finetunning-inceptionv3-tensor-dimension-error%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    You shouldn't use pop() method on models created using functional API (i.e. keras.models.Model). Only Sequential models (i.e. keras.models.Sequential) have a built-in pop() method (usage: model.pop()). Instead, use index or the names of the layers to access a specific layer:



    classifier.load_weights("saved_weights.h5")
    x = classifier.layers[-5].output # use index of the layer directly
    x = GlobalAveragePooling2D()(x)





    share|improve this answer



























      0














      You shouldn't use pop() method on models created using functional API (i.e. keras.models.Model). Only Sequential models (i.e. keras.models.Sequential) have a built-in pop() method (usage: model.pop()). Instead, use index or the names of the layers to access a specific layer:



      classifier.load_weights("saved_weights.h5")
      x = classifier.layers[-5].output # use index of the layer directly
      x = GlobalAveragePooling2D()(x)





      share|improve this answer

























        0












        0








        0







        You shouldn't use pop() method on models created using functional API (i.e. keras.models.Model). Only Sequential models (i.e. keras.models.Sequential) have a built-in pop() method (usage: model.pop()). Instead, use index or the names of the layers to access a specific layer:



        classifier.load_weights("saved_weights.h5")
        x = classifier.layers[-5].output # use index of the layer directly
        x = GlobalAveragePooling2D()(x)





        share|improve this answer













        You shouldn't use pop() method on models created using functional API (i.e. keras.models.Model). Only Sequential models (i.e. keras.models.Sequential) have a built-in pop() method (usage: model.pop()). Instead, use index or the names of the layers to access a specific layer:



        classifier.load_weights("saved_weights.h5")
        x = classifier.layers[-5].output # use index of the layer directly
        x = GlobalAveragePooling2D()(x)






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 15 '18 at 5:29









        todaytoday

        11k22038




        11k22038





























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53312025%2fkeras-finetunning-inceptionv3-tensor-dimension-error%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            這個網誌中的熱門文章

            How to read a connectionString WITH PROVIDER in .NET Core?

            In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

            Museum of Modern and Contemporary Art of Trento and Rovereto