Keras finetunning InceptionV3 tensor dimension error
I am trying to finetune a model in Keras:
inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150,
150, 1))
x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)
####training training training ... save weights
classifier.load_weights("saved_weights.h5")
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3
x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)
But I get the error:
ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2
python machine-learning keras deep-learning finetunning
add a comment |
I am trying to finetune a model in Keras:
inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150,
150, 1))
x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)
####training training training ... save weights
classifier.load_weights("saved_weights.h5")
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3
x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)
But I get the error:
ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2
python machine-learning keras deep-learning finetunning
What's the shape of the input data you are giving to this model?
– Matias Valdenegro
Nov 15 '18 at 6:33
add a comment |
I am trying to finetune a model in Keras:
inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150,
150, 1))
x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)
####training training training ... save weights
classifier.load_weights("saved_weights.h5")
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3
x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)
But I get the error:
ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2
python machine-learning keras deep-learning finetunning
I am trying to finetune a model in Keras:
inception_model = InceptionV3(weights=None, include_top=False, input_shape=(150,
150, 1))
x = inception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(inception_model.input, predictions)
####training training training ... save weights
classifier.load_weights("saved_weights.h5")
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
classifier.layers.pop()
###enough poping to reach standard InceptionV3
x = classifier.output
x = GlobalAveragePooling2D()(x)
x = Dense(256, activation='relu', name='fc1')(x)
x = Dropout(0.5)(x)
predictions = Dense(10, activation='softmax', name='predictions')(x)
classifier = Model(classifier.input, predictions)
But I get the error:
ValueError: Input 0 is incompatible with layer global_average_pooling2d_3: expected ndim=4, found ndim=2
python machine-learning keras deep-learning finetunning
python machine-learning keras deep-learning finetunning
edited Nov 15 '18 at 13:40
today
11k22038
11k22038
asked Nov 15 '18 at 3:30
Boris MocialovBoris Mocialov
2,58811547
2,58811547
What's the shape of the input data you are giving to this model?
– Matias Valdenegro
Nov 15 '18 at 6:33
add a comment |
What's the shape of the input data you are giving to this model?
– Matias Valdenegro
Nov 15 '18 at 6:33
What's the shape of the input data you are giving to this model?
– Matias Valdenegro
Nov 15 '18 at 6:33
What's the shape of the input data you are giving to this model?
– Matias Valdenegro
Nov 15 '18 at 6:33
add a comment |
1 Answer
1
active
oldest
votes
You shouldn't use pop()
method on models created using functional API (i.e. keras.models.Model
). Only Sequential models (i.e. keras.models.Sequential
) have a built-in pop()
method (usage: model.pop()
). Instead, use index or the names of the layers to access a specific layer:
classifier.load_weights("saved_weights.h5")
x = classifier.layers[-5].output # use index of the layer directly
x = GlobalAveragePooling2D()(x)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53312025%2fkeras-finetunning-inceptionv3-tensor-dimension-error%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You shouldn't use pop()
method on models created using functional API (i.e. keras.models.Model
). Only Sequential models (i.e. keras.models.Sequential
) have a built-in pop()
method (usage: model.pop()
). Instead, use index or the names of the layers to access a specific layer:
classifier.load_weights("saved_weights.h5")
x = classifier.layers[-5].output # use index of the layer directly
x = GlobalAveragePooling2D()(x)
add a comment |
You shouldn't use pop()
method on models created using functional API (i.e. keras.models.Model
). Only Sequential models (i.e. keras.models.Sequential
) have a built-in pop()
method (usage: model.pop()
). Instead, use index or the names of the layers to access a specific layer:
classifier.load_weights("saved_weights.h5")
x = classifier.layers[-5].output # use index of the layer directly
x = GlobalAveragePooling2D()(x)
add a comment |
You shouldn't use pop()
method on models created using functional API (i.e. keras.models.Model
). Only Sequential models (i.e. keras.models.Sequential
) have a built-in pop()
method (usage: model.pop()
). Instead, use index or the names of the layers to access a specific layer:
classifier.load_weights("saved_weights.h5")
x = classifier.layers[-5].output # use index of the layer directly
x = GlobalAveragePooling2D()(x)
You shouldn't use pop()
method on models created using functional API (i.e. keras.models.Model
). Only Sequential models (i.e. keras.models.Sequential
) have a built-in pop()
method (usage: model.pop()
). Instead, use index or the names of the layers to access a specific layer:
classifier.load_weights("saved_weights.h5")
x = classifier.layers[-5].output # use index of the layer directly
x = GlobalAveragePooling2D()(x)
answered Nov 15 '18 at 5:29
todaytoday
11k22038
11k22038
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53312025%2fkeras-finetunning-inceptionv3-tensor-dimension-error%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What's the shape of the input data you are giving to this model?
– Matias Valdenegro
Nov 15 '18 at 6:33