How can I get a gradient at two points with Keras/Tensorflow










1















I'm trying to get the gradient of a function at two different values of the independent variable. I am doing this in the context of modifying the get_updates method of Keras' optimizer class.



The relevant section of the code I've written is



def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]

# Copy parameters
params2 =
for p in params:
params2.append(K.variable(K.get_value(p), name=p.name[:-2] + "_cpy1/"))

self.weights = [self.iterations]
for p, p2, g in zip(params, params2, grads):
v = - self.lr * g
new_p = p + 0.5*v # Intermediate/Partial step
new_p2 = p2 + v # Reference point for 2nd Gradient

grads2 = self.get_gradients(loss, params2)
....


The error I get when I execute this code is



 File "/home/me/Projects/RungeKutta/rk_optimizers2.py", line 86, in get_updates
grads2 = self.get_gradients(loss, params2)
File "/home/me/anaconda2/lib/python2.7/site-packages/keras/optimizers.py", line 91, in get_gradients
raise ValueError('An operation has `None` for gradient. '
ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.


The problematic section of code from Keras's optimizers.py is:



def get_gradients(self, loss, params):
grads = K.gradients(loss, params)
if None in grads:
raise ValueError('An operation has `None` for gradient. '
'Please make sure that all of your ops have a '
'gradient defined (i.e. are differentiable). '
'Common ops without gradient: '
'K.argmax, K.round, K.eval.')


In my case, K corresponds to Tensorflow. So, the corresponding code for gradients is:



def gradients(loss, variables):
"""Returns the gradients of `loss` w.r.t. `variables`.

# Arguments
loss: Scalar tensor to minimize.
variables: List of variables.

# Returns
A gradients tensor.
"""
return tf.gradients(loss, variables, colocate_gradients_with_ops=True)


Why do I get the error I see? How can I get a gradient at the first projected updated parameter so that I can get a final update using the average of the gradient at the starting point and the gradient at an (initially) projected end point?










share|improve this question


























    1















    I'm trying to get the gradient of a function at two different values of the independent variable. I am doing this in the context of modifying the get_updates method of Keras' optimizer class.



    The relevant section of the code I've written is



    def get_updates(self, loss, params):
    grads = self.get_gradients(loss, params)
    self.updates = [K.update_add(self.iterations, 1)]

    # Copy parameters
    params2 =
    for p in params:
    params2.append(K.variable(K.get_value(p), name=p.name[:-2] + "_cpy1/"))

    self.weights = [self.iterations]
    for p, p2, g in zip(params, params2, grads):
    v = - self.lr * g
    new_p = p + 0.5*v # Intermediate/Partial step
    new_p2 = p2 + v # Reference point for 2nd Gradient

    grads2 = self.get_gradients(loss, params2)
    ....


    The error I get when I execute this code is



     File "/home/me/Projects/RungeKutta/rk_optimizers2.py", line 86, in get_updates
    grads2 = self.get_gradients(loss, params2)
    File "/home/me/anaconda2/lib/python2.7/site-packages/keras/optimizers.py", line 91, in get_gradients
    raise ValueError('An operation has `None` for gradient. '
    ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.


    The problematic section of code from Keras's optimizers.py is:



    def get_gradients(self, loss, params):
    grads = K.gradients(loss, params)
    if None in grads:
    raise ValueError('An operation has `None` for gradient. '
    'Please make sure that all of your ops have a '
    'gradient defined (i.e. are differentiable). '
    'Common ops without gradient: '
    'K.argmax, K.round, K.eval.')


    In my case, K corresponds to Tensorflow. So, the corresponding code for gradients is:



    def gradients(loss, variables):
    """Returns the gradients of `loss` w.r.t. `variables`.

    # Arguments
    loss: Scalar tensor to minimize.
    variables: List of variables.

    # Returns
    A gradients tensor.
    """
    return tf.gradients(loss, variables, colocate_gradients_with_ops=True)


    Why do I get the error I see? How can I get a gradient at the first projected updated parameter so that I can get a final update using the average of the gradient at the starting point and the gradient at an (initially) projected end point?










    share|improve this question
























      1












      1








      1








      I'm trying to get the gradient of a function at two different values of the independent variable. I am doing this in the context of modifying the get_updates method of Keras' optimizer class.



      The relevant section of the code I've written is



      def get_updates(self, loss, params):
      grads = self.get_gradients(loss, params)
      self.updates = [K.update_add(self.iterations, 1)]

      # Copy parameters
      params2 =
      for p in params:
      params2.append(K.variable(K.get_value(p), name=p.name[:-2] + "_cpy1/"))

      self.weights = [self.iterations]
      for p, p2, g in zip(params, params2, grads):
      v = - self.lr * g
      new_p = p + 0.5*v # Intermediate/Partial step
      new_p2 = p2 + v # Reference point for 2nd Gradient

      grads2 = self.get_gradients(loss, params2)
      ....


      The error I get when I execute this code is



       File "/home/me/Projects/RungeKutta/rk_optimizers2.py", line 86, in get_updates
      grads2 = self.get_gradients(loss, params2)
      File "/home/me/anaconda2/lib/python2.7/site-packages/keras/optimizers.py", line 91, in get_gradients
      raise ValueError('An operation has `None` for gradient. '
      ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.


      The problematic section of code from Keras's optimizers.py is:



      def get_gradients(self, loss, params):
      grads = K.gradients(loss, params)
      if None in grads:
      raise ValueError('An operation has `None` for gradient. '
      'Please make sure that all of your ops have a '
      'gradient defined (i.e. are differentiable). '
      'Common ops without gradient: '
      'K.argmax, K.round, K.eval.')


      In my case, K corresponds to Tensorflow. So, the corresponding code for gradients is:



      def gradients(loss, variables):
      """Returns the gradients of `loss` w.r.t. `variables`.

      # Arguments
      loss: Scalar tensor to minimize.
      variables: List of variables.

      # Returns
      A gradients tensor.
      """
      return tf.gradients(loss, variables, colocate_gradients_with_ops=True)


      Why do I get the error I see? How can I get a gradient at the first projected updated parameter so that I can get a final update using the average of the gradient at the starting point and the gradient at an (initially) projected end point?










      share|improve this question














      I'm trying to get the gradient of a function at two different values of the independent variable. I am doing this in the context of modifying the get_updates method of Keras' optimizer class.



      The relevant section of the code I've written is



      def get_updates(self, loss, params):
      grads = self.get_gradients(loss, params)
      self.updates = [K.update_add(self.iterations, 1)]

      # Copy parameters
      params2 =
      for p in params:
      params2.append(K.variable(K.get_value(p), name=p.name[:-2] + "_cpy1/"))

      self.weights = [self.iterations]
      for p, p2, g in zip(params, params2, grads):
      v = - self.lr * g
      new_p = p + 0.5*v # Intermediate/Partial step
      new_p2 = p2 + v # Reference point for 2nd Gradient

      grads2 = self.get_gradients(loss, params2)
      ....


      The error I get when I execute this code is



       File "/home/me/Projects/RungeKutta/rk_optimizers2.py", line 86, in get_updates
      grads2 = self.get_gradients(loss, params2)
      File "/home/me/anaconda2/lib/python2.7/site-packages/keras/optimizers.py", line 91, in get_gradients
      raise ValueError('An operation has `None` for gradient. '
      ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.


      The problematic section of code from Keras's optimizers.py is:



      def get_gradients(self, loss, params):
      grads = K.gradients(loss, params)
      if None in grads:
      raise ValueError('An operation has `None` for gradient. '
      'Please make sure that all of your ops have a '
      'gradient defined (i.e. are differentiable). '
      'Common ops without gradient: '
      'K.argmax, K.round, K.eval.')


      In my case, K corresponds to Tensorflow. So, the corresponding code for gradients is:



      def gradients(loss, variables):
      """Returns the gradients of `loss` w.r.t. `variables`.

      # Arguments
      loss: Scalar tensor to minimize.
      variables: List of variables.

      # Returns
      A gradients tensor.
      """
      return tf.gradients(loss, variables, colocate_gradients_with_ops=True)


      Why do I get the error I see? How can I get a gradient at the first projected updated parameter so that I can get a final update using the average of the gradient at the starting point and the gradient at an (initially) projected end point?







      python tensorflow keras






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 15 '18 at 6:35









      user1245262user1245262

      2,75432848




      2,75432848






















          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function ()
          StackExchange.using("externalEditor", function ()
          StackExchange.using("snippets", function ()
          StackExchange.snippets.init();
          );
          );
          , "code-snippets");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "1"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53313713%2fhow-can-i-get-a-gradient-at-two-points-with-keras-tensorflow%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53313713%2fhow-can-i-get-a-gradient-at-two-points-with-keras-tensorflow%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          這個網誌中的熱門文章

          How to read a connectionString WITH PROVIDER in .NET Core?

          In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

          Museum of Modern and Contemporary Art of Trento and Rovereto