Bokeh: dynamically change axis type (ordinal or nominal) depending on source column data
I am creating an interactive scatter chart that includes dropdowns for x and y axes.
However, currently it will work only when the x and y axes source columns are numericals or date objects etc. In case of string columns nothing will get displayed.
How do I alter the script so it automatically changes the axis type from nominal to ordinal - and vice versa - depending on current dropdown selection?
# -*- coding: utf-8 -*-
from os.path import dirname, join
import numpy as np
import pandas.io.sql as psql
import sqlite3 as sql
import pandas as pd
from bokeh.plotting import figure
from bokeh.layouts import layout, widgetbox
from bokeh.models import ColumnDataSource, Div
from bokeh.models.widgets import Slider, Select, TextInput
from bokeh.io import curdoc
projects = pd.read_excel('explorer_data.xlsx')
#functions
year = lambda x : x.to_pydatetime().year
axis_map = header:header for header in list(projects)
# Create Input controls
budget = Slider(title="Minimum budget", value=80, start=0, end=200000, step=1000)
start_date = Slider(title="Project start date", start=1940, end=2019, value=1970, step=1)
end_date = Slider(title="Project end date", start=1940, end=2019, value=2019, step=1)
x_axis = Select(title="X Axis", options=sorted(axis_map.keys()), value="Budget")
y_axis = Select(title="Y Axis", options=sorted(axis_map.keys()), value="Spent/Paid")
# Create Column Data Source that will be used by the plot
source = ColumnDataSource(data=dict(x=, y=, number=, title=, year=, revenue=, alpha=))
TOOLTIPS=[
("ID", "@number")
# ("Year", "@year"),
# ("$", "@revenue")
]
p = figure(plot_height=600, plot_width=700, title="", toolbar_location=None, tools = "pan,wheel_zoom,box_zoom,reset", tooltips=TOOLTIPS)
p.circle(x="x", y="y", source=source, size=7)
def select_projects():
selected = projects[
(projects['Budget'] >= budget.value) &
(projects['Start Date'].map(year) >= start_date.value) &
(projects['End Date'].map(year) <= end_date.value)
]
return selected
def update():
df = select_projects()
x_name = axis_map[x_axis.value]
y_name = axis_map[y_axis.value]
p.xaxis.axis_label = x_axis.value
p.yaxis.axis_label = y_axis.value
p.title.text = "%d projects selected" % len(df)
source.data = dict(
x=df[x_name],
y=df[y_name],
number=df['Project ID'],
)
controls = [budget, start_date, end_date, x_axis, y_axis]
for control in controls:
control.on_change('value', lambda attr, old, new: update())
sizing_mode = 'fixed' # 'scale_width' also looks nice with this example
inputs = widgetbox(*controls, sizing_mode=sizing_mode)
l = layout([
# [desc],
[inputs, p],
], sizing_mode=sizing_mode)
update() # initial load of the data
curdoc().add_root(l)
curdoc().title = "Projects"
python bokeh
add a comment |
I am creating an interactive scatter chart that includes dropdowns for x and y axes.
However, currently it will work only when the x and y axes source columns are numericals or date objects etc. In case of string columns nothing will get displayed.
How do I alter the script so it automatically changes the axis type from nominal to ordinal - and vice versa - depending on current dropdown selection?
# -*- coding: utf-8 -*-
from os.path import dirname, join
import numpy as np
import pandas.io.sql as psql
import sqlite3 as sql
import pandas as pd
from bokeh.plotting import figure
from bokeh.layouts import layout, widgetbox
from bokeh.models import ColumnDataSource, Div
from bokeh.models.widgets import Slider, Select, TextInput
from bokeh.io import curdoc
projects = pd.read_excel('explorer_data.xlsx')
#functions
year = lambda x : x.to_pydatetime().year
axis_map = header:header for header in list(projects)
# Create Input controls
budget = Slider(title="Minimum budget", value=80, start=0, end=200000, step=1000)
start_date = Slider(title="Project start date", start=1940, end=2019, value=1970, step=1)
end_date = Slider(title="Project end date", start=1940, end=2019, value=2019, step=1)
x_axis = Select(title="X Axis", options=sorted(axis_map.keys()), value="Budget")
y_axis = Select(title="Y Axis", options=sorted(axis_map.keys()), value="Spent/Paid")
# Create Column Data Source that will be used by the plot
source = ColumnDataSource(data=dict(x=, y=, number=, title=, year=, revenue=, alpha=))
TOOLTIPS=[
("ID", "@number")
# ("Year", "@year"),
# ("$", "@revenue")
]
p = figure(plot_height=600, plot_width=700, title="", toolbar_location=None, tools = "pan,wheel_zoom,box_zoom,reset", tooltips=TOOLTIPS)
p.circle(x="x", y="y", source=source, size=7)
def select_projects():
selected = projects[
(projects['Budget'] >= budget.value) &
(projects['Start Date'].map(year) >= start_date.value) &
(projects['End Date'].map(year) <= end_date.value)
]
return selected
def update():
df = select_projects()
x_name = axis_map[x_axis.value]
y_name = axis_map[y_axis.value]
p.xaxis.axis_label = x_axis.value
p.yaxis.axis_label = y_axis.value
p.title.text = "%d projects selected" % len(df)
source.data = dict(
x=df[x_name],
y=df[y_name],
number=df['Project ID'],
)
controls = [budget, start_date, end_date, x_axis, y_axis]
for control in controls:
control.on_change('value', lambda attr, old, new: update())
sizing_mode = 'fixed' # 'scale_width' also looks nice with this example
inputs = widgetbox(*controls, sizing_mode=sizing_mode)
l = layout([
# [desc],
[inputs, p],
], sizing_mode=sizing_mode)
update() # initial load of the data
curdoc().add_root(l)
curdoc().title = "Projects"
python bokeh
add a comment |
I am creating an interactive scatter chart that includes dropdowns for x and y axes.
However, currently it will work only when the x and y axes source columns are numericals or date objects etc. In case of string columns nothing will get displayed.
How do I alter the script so it automatically changes the axis type from nominal to ordinal - and vice versa - depending on current dropdown selection?
# -*- coding: utf-8 -*-
from os.path import dirname, join
import numpy as np
import pandas.io.sql as psql
import sqlite3 as sql
import pandas as pd
from bokeh.plotting import figure
from bokeh.layouts import layout, widgetbox
from bokeh.models import ColumnDataSource, Div
from bokeh.models.widgets import Slider, Select, TextInput
from bokeh.io import curdoc
projects = pd.read_excel('explorer_data.xlsx')
#functions
year = lambda x : x.to_pydatetime().year
axis_map = header:header for header in list(projects)
# Create Input controls
budget = Slider(title="Minimum budget", value=80, start=0, end=200000, step=1000)
start_date = Slider(title="Project start date", start=1940, end=2019, value=1970, step=1)
end_date = Slider(title="Project end date", start=1940, end=2019, value=2019, step=1)
x_axis = Select(title="X Axis", options=sorted(axis_map.keys()), value="Budget")
y_axis = Select(title="Y Axis", options=sorted(axis_map.keys()), value="Spent/Paid")
# Create Column Data Source that will be used by the plot
source = ColumnDataSource(data=dict(x=, y=, number=, title=, year=, revenue=, alpha=))
TOOLTIPS=[
("ID", "@number")
# ("Year", "@year"),
# ("$", "@revenue")
]
p = figure(plot_height=600, plot_width=700, title="", toolbar_location=None, tools = "pan,wheel_zoom,box_zoom,reset", tooltips=TOOLTIPS)
p.circle(x="x", y="y", source=source, size=7)
def select_projects():
selected = projects[
(projects['Budget'] >= budget.value) &
(projects['Start Date'].map(year) >= start_date.value) &
(projects['End Date'].map(year) <= end_date.value)
]
return selected
def update():
df = select_projects()
x_name = axis_map[x_axis.value]
y_name = axis_map[y_axis.value]
p.xaxis.axis_label = x_axis.value
p.yaxis.axis_label = y_axis.value
p.title.text = "%d projects selected" % len(df)
source.data = dict(
x=df[x_name],
y=df[y_name],
number=df['Project ID'],
)
controls = [budget, start_date, end_date, x_axis, y_axis]
for control in controls:
control.on_change('value', lambda attr, old, new: update())
sizing_mode = 'fixed' # 'scale_width' also looks nice with this example
inputs = widgetbox(*controls, sizing_mode=sizing_mode)
l = layout([
# [desc],
[inputs, p],
], sizing_mode=sizing_mode)
update() # initial load of the data
curdoc().add_root(l)
curdoc().title = "Projects"
python bokeh
I am creating an interactive scatter chart that includes dropdowns for x and y axes.
However, currently it will work only when the x and y axes source columns are numericals or date objects etc. In case of string columns nothing will get displayed.
How do I alter the script so it automatically changes the axis type from nominal to ordinal - and vice versa - depending on current dropdown selection?
# -*- coding: utf-8 -*-
from os.path import dirname, join
import numpy as np
import pandas.io.sql as psql
import sqlite3 as sql
import pandas as pd
from bokeh.plotting import figure
from bokeh.layouts import layout, widgetbox
from bokeh.models import ColumnDataSource, Div
from bokeh.models.widgets import Slider, Select, TextInput
from bokeh.io import curdoc
projects = pd.read_excel('explorer_data.xlsx')
#functions
year = lambda x : x.to_pydatetime().year
axis_map = header:header for header in list(projects)
# Create Input controls
budget = Slider(title="Minimum budget", value=80, start=0, end=200000, step=1000)
start_date = Slider(title="Project start date", start=1940, end=2019, value=1970, step=1)
end_date = Slider(title="Project end date", start=1940, end=2019, value=2019, step=1)
x_axis = Select(title="X Axis", options=sorted(axis_map.keys()), value="Budget")
y_axis = Select(title="Y Axis", options=sorted(axis_map.keys()), value="Spent/Paid")
# Create Column Data Source that will be used by the plot
source = ColumnDataSource(data=dict(x=, y=, number=, title=, year=, revenue=, alpha=))
TOOLTIPS=[
("ID", "@number")
# ("Year", "@year"),
# ("$", "@revenue")
]
p = figure(plot_height=600, plot_width=700, title="", toolbar_location=None, tools = "pan,wheel_zoom,box_zoom,reset", tooltips=TOOLTIPS)
p.circle(x="x", y="y", source=source, size=7)
def select_projects():
selected = projects[
(projects['Budget'] >= budget.value) &
(projects['Start Date'].map(year) >= start_date.value) &
(projects['End Date'].map(year) <= end_date.value)
]
return selected
def update():
df = select_projects()
x_name = axis_map[x_axis.value]
y_name = axis_map[y_axis.value]
p.xaxis.axis_label = x_axis.value
p.yaxis.axis_label = y_axis.value
p.title.text = "%d projects selected" % len(df)
source.data = dict(
x=df[x_name],
y=df[y_name],
number=df['Project ID'],
)
controls = [budget, start_date, end_date, x_axis, y_axis]
for control in controls:
control.on_change('value', lambda attr, old, new: update())
sizing_mode = 'fixed' # 'scale_width' also looks nice with this example
inputs = widgetbox(*controls, sizing_mode=sizing_mode)
l = layout([
# [desc],
[inputs, p],
], sizing_mode=sizing_mode)
update() # initial load of the data
curdoc().add_root(l)
curdoc().title = "Projects"
python bokeh
python bokeh
asked Nov 15 '18 at 17:17
barciewiczbarciewicz
793313
793313
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53324761%2fbokeh-dynamically-change-axis-type-ordinal-or-nominal-depending-on-source-col%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53324761%2fbokeh-dynamically-change-axis-type-ordinal-or-nominal-depending-on-source-col%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown