why sort_values() is diifferent form sort_values().values
I want to sort a dataframe by all columns,and I find a way to solve that using
df = df.apply( lambda x: x.sort_values())
and I used it to my data
text1 = text
text = text.apply( lambda x : x.sort_values())
text1 = text1.apply( lambda x : x.sort_values().values)
text.head()
text1.head()
why not text = text.apply( lambda x : x.sort_values())
get a wrong answer,and what is the .vaules)
function?
text.head()
Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328
N-1 0.220934 0.203666 0.205743 0.196011 0.176293
N-10 0.432692 0.387074 0.395692 0.355331 0.358963
N-11 0.483360 0.463233 0.456304 0.428930 0.421482
N-12 0.365057 0.364417 0.385134 0.352451 0.350513
N-13 0.492172 0.466263 0.480657 0.439115 0.404883
text1.head()
Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328
P+1 -21.297623 -25.141329 -21.097095 -31.380476 -38.847958
P+2 -12.681051 -14.661134 -13.688742 -16.829298 -20.320133
P+3 -8.164744 -13.097990 -11.784309 -15.419610 -17.822252
P+4 -0.023353 -0.926852 -8.036203 -14.583183 -17.071484
P+5 0.022854 -0.037756 -0.002519 -1.891178 -7.795961
python pandas
add a comment |
I want to sort a dataframe by all columns,and I find a way to solve that using
df = df.apply( lambda x: x.sort_values())
and I used it to my data
text1 = text
text = text.apply( lambda x : x.sort_values())
text1 = text1.apply( lambda x : x.sort_values().values)
text.head()
text1.head()
why not text = text.apply( lambda x : x.sort_values())
get a wrong answer,and what is the .vaules)
function?
text.head()
Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328
N-1 0.220934 0.203666 0.205743 0.196011 0.176293
N-10 0.432692 0.387074 0.395692 0.355331 0.358963
N-11 0.483360 0.463233 0.456304 0.428930 0.421482
N-12 0.365057 0.364417 0.385134 0.352451 0.350513
N-13 0.492172 0.466263 0.480657 0.439115 0.404883
text1.head()
Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328
P+1 -21.297623 -25.141329 -21.097095 -31.380476 -38.847958
P+2 -12.681051 -14.661134 -13.688742 -16.829298 -20.320133
P+3 -8.164744 -13.097990 -11.784309 -15.419610 -17.822252
P+4 -0.023353 -0.926852 -8.036203 -14.583183 -17.071484
P+5 0.022854 -0.037756 -0.002519 -1.891178 -7.795961
python pandas
add a comment |
I want to sort a dataframe by all columns,and I find a way to solve that using
df = df.apply( lambda x: x.sort_values())
and I used it to my data
text1 = text
text = text.apply( lambda x : x.sort_values())
text1 = text1.apply( lambda x : x.sort_values().values)
text.head()
text1.head()
why not text = text.apply( lambda x : x.sort_values())
get a wrong answer,and what is the .vaules)
function?
text.head()
Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328
N-1 0.220934 0.203666 0.205743 0.196011 0.176293
N-10 0.432692 0.387074 0.395692 0.355331 0.358963
N-11 0.483360 0.463233 0.456304 0.428930 0.421482
N-12 0.365057 0.364417 0.385134 0.352451 0.350513
N-13 0.492172 0.466263 0.480657 0.439115 0.404883
text1.head()
Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328
P+1 -21.297623 -25.141329 -21.097095 -31.380476 -38.847958
P+2 -12.681051 -14.661134 -13.688742 -16.829298 -20.320133
P+3 -8.164744 -13.097990 -11.784309 -15.419610 -17.822252
P+4 -0.023353 -0.926852 -8.036203 -14.583183 -17.071484
P+5 0.022854 -0.037756 -0.002519 -1.891178 -7.795961
python pandas
I want to sort a dataframe by all columns,and I find a way to solve that using
df = df.apply( lambda x: x.sort_values())
and I used it to my data
text1 = text
text = text.apply( lambda x : x.sort_values())
text1 = text1.apply( lambda x : x.sort_values().values)
text.head()
text1.head()
why not text = text.apply( lambda x : x.sort_values())
get a wrong answer,and what is the .vaules)
function?
text.head()
Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328
N-1 0.220934 0.203666 0.205743 0.196011 0.176293
N-10 0.432692 0.387074 0.395692 0.355331 0.358963
N-11 0.483360 0.463233 0.456304 0.428930 0.421482
N-12 0.365057 0.364417 0.385134 0.352451 0.350513
N-13 0.492172 0.466263 0.480657 0.439115 0.404883
text1.head()
Wave 2881.394531 2880.574219 2879.75293 2878.931641 2878.111328
P+1 -21.297623 -25.141329 -21.097095 -31.380476 -38.847958
P+2 -12.681051 -14.661134 -13.688742 -16.829298 -20.320133
P+3 -8.164744 -13.097990 -11.784309 -15.419610 -17.822252
P+4 -0.023353 -0.926852 -8.036203 -14.583183 -17.071484
P+5 0.022854 -0.037756 -0.002519 -1.891178 -7.795961
python pandas
python pandas
edited Nov 14 '18 at 3:40
Andreas
1,89731018
1,89731018
asked Nov 14 '18 at 3:19
X.tangX.tang
113
113
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
By default, Pandas operations align data based on their index.
So consider for example
In [19]: df = pd.DataFrame([(10,1),(9,2),(8,3),(7,4)], index=list('ABDC'))
In [20]: df
Out[20]:
0 1
A 10 1
B 9 2
D 8 3
C 7 4
When Pandas evaluates df.apply(lambda x: x.sort_values())
,
it generates the Series:
In [24]: df[0].sort_values()
Out[24]:
C 7
D 8
B 9
A 10
Name: 0, dtype: int64
In [25]: df[1].sort_values()
Out[25]:
A 1
B 2
D 3
C 4
Name: 1, dtype: int64
and then tries to combine these two Series into a resultant DataFrame. It does that by aligning the indices:
In [21]: df.apply(lambda x: x.sort_values())
Out[21]:
0 1
A 10 1
B 9 2
C 7 4
D 8 3
In contrast, when the lambda function returns a NumPy array there is no index to align upon. So Pandas merely pastes the values from the NumPy array into a resultant DataFrame in the same order.
So, when Pandas evaluates df.apply(lambda x: x.sort_values().values)
,
it generates the NumPy arrays:
In [26]: df[0].sort_values().values
Out[26]: array([ 7, 8, 9, 10])
In [27]: df[1].sort_values().values
Out[27]: array([1, 2, 3, 4])
and then tries to combine these two NumPy arrays into a resultant DataFrame with the values in the same order
In [28]: df.apply(lambda x: x.sort_values().values)
Out[28]:
0 1
A 7 1
B 8 2
D 9 3
C 10 4
@ unutbu . great explanation.
– pygo
Nov 14 '18 at 4:27
That is a correct and detailed answer, thank you very much !
– X.tang
Nov 14 '18 at 8:41
Then don't forget to accept it @X.tang
– IanS
Nov 22 '18 at 9:11
add a comment |
Welcome to StackOverflow!
Based on pandas documentation, sort_values()
return the DataFrame object itself, while values()
return the numpy array representation of the values in the DataFrame. Since apply()
applies the specified function across the axis of the DataFrame, the applied function must return the numpy array representation of that current row/column, instead of returning the whole DataFrame. That is why it gives you the wrong result when you are only using sort_values()
.
You can read the more complete explanation at sort_values() documentation, values() documentation, and apply() documentation
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53292709%2fwhy-sort-values-is-diifferent-form-sort-values-values%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
By default, Pandas operations align data based on their index.
So consider for example
In [19]: df = pd.DataFrame([(10,1),(9,2),(8,3),(7,4)], index=list('ABDC'))
In [20]: df
Out[20]:
0 1
A 10 1
B 9 2
D 8 3
C 7 4
When Pandas evaluates df.apply(lambda x: x.sort_values())
,
it generates the Series:
In [24]: df[0].sort_values()
Out[24]:
C 7
D 8
B 9
A 10
Name: 0, dtype: int64
In [25]: df[1].sort_values()
Out[25]:
A 1
B 2
D 3
C 4
Name: 1, dtype: int64
and then tries to combine these two Series into a resultant DataFrame. It does that by aligning the indices:
In [21]: df.apply(lambda x: x.sort_values())
Out[21]:
0 1
A 10 1
B 9 2
C 7 4
D 8 3
In contrast, when the lambda function returns a NumPy array there is no index to align upon. So Pandas merely pastes the values from the NumPy array into a resultant DataFrame in the same order.
So, when Pandas evaluates df.apply(lambda x: x.sort_values().values)
,
it generates the NumPy arrays:
In [26]: df[0].sort_values().values
Out[26]: array([ 7, 8, 9, 10])
In [27]: df[1].sort_values().values
Out[27]: array([1, 2, 3, 4])
and then tries to combine these two NumPy arrays into a resultant DataFrame with the values in the same order
In [28]: df.apply(lambda x: x.sort_values().values)
Out[28]:
0 1
A 7 1
B 8 2
D 9 3
C 10 4
@ unutbu . great explanation.
– pygo
Nov 14 '18 at 4:27
That is a correct and detailed answer, thank you very much !
– X.tang
Nov 14 '18 at 8:41
Then don't forget to accept it @X.tang
– IanS
Nov 22 '18 at 9:11
add a comment |
By default, Pandas operations align data based on their index.
So consider for example
In [19]: df = pd.DataFrame([(10,1),(9,2),(8,3),(7,4)], index=list('ABDC'))
In [20]: df
Out[20]:
0 1
A 10 1
B 9 2
D 8 3
C 7 4
When Pandas evaluates df.apply(lambda x: x.sort_values())
,
it generates the Series:
In [24]: df[0].sort_values()
Out[24]:
C 7
D 8
B 9
A 10
Name: 0, dtype: int64
In [25]: df[1].sort_values()
Out[25]:
A 1
B 2
D 3
C 4
Name: 1, dtype: int64
and then tries to combine these two Series into a resultant DataFrame. It does that by aligning the indices:
In [21]: df.apply(lambda x: x.sort_values())
Out[21]:
0 1
A 10 1
B 9 2
C 7 4
D 8 3
In contrast, when the lambda function returns a NumPy array there is no index to align upon. So Pandas merely pastes the values from the NumPy array into a resultant DataFrame in the same order.
So, when Pandas evaluates df.apply(lambda x: x.sort_values().values)
,
it generates the NumPy arrays:
In [26]: df[0].sort_values().values
Out[26]: array([ 7, 8, 9, 10])
In [27]: df[1].sort_values().values
Out[27]: array([1, 2, 3, 4])
and then tries to combine these two NumPy arrays into a resultant DataFrame with the values in the same order
In [28]: df.apply(lambda x: x.sort_values().values)
Out[28]:
0 1
A 7 1
B 8 2
D 9 3
C 10 4
@ unutbu . great explanation.
– pygo
Nov 14 '18 at 4:27
That is a correct and detailed answer, thank you very much !
– X.tang
Nov 14 '18 at 8:41
Then don't forget to accept it @X.tang
– IanS
Nov 22 '18 at 9:11
add a comment |
By default, Pandas operations align data based on their index.
So consider for example
In [19]: df = pd.DataFrame([(10,1),(9,2),(8,3),(7,4)], index=list('ABDC'))
In [20]: df
Out[20]:
0 1
A 10 1
B 9 2
D 8 3
C 7 4
When Pandas evaluates df.apply(lambda x: x.sort_values())
,
it generates the Series:
In [24]: df[0].sort_values()
Out[24]:
C 7
D 8
B 9
A 10
Name: 0, dtype: int64
In [25]: df[1].sort_values()
Out[25]:
A 1
B 2
D 3
C 4
Name: 1, dtype: int64
and then tries to combine these two Series into a resultant DataFrame. It does that by aligning the indices:
In [21]: df.apply(lambda x: x.sort_values())
Out[21]:
0 1
A 10 1
B 9 2
C 7 4
D 8 3
In contrast, when the lambda function returns a NumPy array there is no index to align upon. So Pandas merely pastes the values from the NumPy array into a resultant DataFrame in the same order.
So, when Pandas evaluates df.apply(lambda x: x.sort_values().values)
,
it generates the NumPy arrays:
In [26]: df[0].sort_values().values
Out[26]: array([ 7, 8, 9, 10])
In [27]: df[1].sort_values().values
Out[27]: array([1, 2, 3, 4])
and then tries to combine these two NumPy arrays into a resultant DataFrame with the values in the same order
In [28]: df.apply(lambda x: x.sort_values().values)
Out[28]:
0 1
A 7 1
B 8 2
D 9 3
C 10 4
By default, Pandas operations align data based on their index.
So consider for example
In [19]: df = pd.DataFrame([(10,1),(9,2),(8,3),(7,4)], index=list('ABDC'))
In [20]: df
Out[20]:
0 1
A 10 1
B 9 2
D 8 3
C 7 4
When Pandas evaluates df.apply(lambda x: x.sort_values())
,
it generates the Series:
In [24]: df[0].sort_values()
Out[24]:
C 7
D 8
B 9
A 10
Name: 0, dtype: int64
In [25]: df[1].sort_values()
Out[25]:
A 1
B 2
D 3
C 4
Name: 1, dtype: int64
and then tries to combine these two Series into a resultant DataFrame. It does that by aligning the indices:
In [21]: df.apply(lambda x: x.sort_values())
Out[21]:
0 1
A 10 1
B 9 2
C 7 4
D 8 3
In contrast, when the lambda function returns a NumPy array there is no index to align upon. So Pandas merely pastes the values from the NumPy array into a resultant DataFrame in the same order.
So, when Pandas evaluates df.apply(lambda x: x.sort_values().values)
,
it generates the NumPy arrays:
In [26]: df[0].sort_values().values
Out[26]: array([ 7, 8, 9, 10])
In [27]: df[1].sort_values().values
Out[27]: array([1, 2, 3, 4])
and then tries to combine these two NumPy arrays into a resultant DataFrame with the values in the same order
In [28]: df.apply(lambda x: x.sort_values().values)
Out[28]:
0 1
A 7 1
B 8 2
D 9 3
C 10 4
answered Nov 14 '18 at 3:36
unutbuunutbu
549k10111801237
549k10111801237
@ unutbu . great explanation.
– pygo
Nov 14 '18 at 4:27
That is a correct and detailed answer, thank you very much !
– X.tang
Nov 14 '18 at 8:41
Then don't forget to accept it @X.tang
– IanS
Nov 22 '18 at 9:11
add a comment |
@ unutbu . great explanation.
– pygo
Nov 14 '18 at 4:27
That is a correct and detailed answer, thank you very much !
– X.tang
Nov 14 '18 at 8:41
Then don't forget to accept it @X.tang
– IanS
Nov 22 '18 at 9:11
@ unutbu . great explanation.
– pygo
Nov 14 '18 at 4:27
@ unutbu . great explanation.
– pygo
Nov 14 '18 at 4:27
That is a correct and detailed answer, thank you very much !
– X.tang
Nov 14 '18 at 8:41
That is a correct and detailed answer, thank you very much !
– X.tang
Nov 14 '18 at 8:41
Then don't forget to accept it @X.tang
– IanS
Nov 22 '18 at 9:11
Then don't forget to accept it @X.tang
– IanS
Nov 22 '18 at 9:11
add a comment |
Welcome to StackOverflow!
Based on pandas documentation, sort_values()
return the DataFrame object itself, while values()
return the numpy array representation of the values in the DataFrame. Since apply()
applies the specified function across the axis of the DataFrame, the applied function must return the numpy array representation of that current row/column, instead of returning the whole DataFrame. That is why it gives you the wrong result when you are only using sort_values()
.
You can read the more complete explanation at sort_values() documentation, values() documentation, and apply() documentation
add a comment |
Welcome to StackOverflow!
Based on pandas documentation, sort_values()
return the DataFrame object itself, while values()
return the numpy array representation of the values in the DataFrame. Since apply()
applies the specified function across the axis of the DataFrame, the applied function must return the numpy array representation of that current row/column, instead of returning the whole DataFrame. That is why it gives you the wrong result when you are only using sort_values()
.
You can read the more complete explanation at sort_values() documentation, values() documentation, and apply() documentation
add a comment |
Welcome to StackOverflow!
Based on pandas documentation, sort_values()
return the DataFrame object itself, while values()
return the numpy array representation of the values in the DataFrame. Since apply()
applies the specified function across the axis of the DataFrame, the applied function must return the numpy array representation of that current row/column, instead of returning the whole DataFrame. That is why it gives you the wrong result when you are only using sort_values()
.
You can read the more complete explanation at sort_values() documentation, values() documentation, and apply() documentation
Welcome to StackOverflow!
Based on pandas documentation, sort_values()
return the DataFrame object itself, while values()
return the numpy array representation of the values in the DataFrame. Since apply()
applies the specified function across the axis of the DataFrame, the applied function must return the numpy array representation of that current row/column, instead of returning the whole DataFrame. That is why it gives you the wrong result when you are only using sort_values()
.
You can read the more complete explanation at sort_values() documentation, values() documentation, and apply() documentation
answered Nov 14 '18 at 3:26
AndreasAndreas
1,89731018
1,89731018
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53292709%2fwhy-sort-values-is-diifferent-form-sort-values-values%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown