Odds ratio interpolation of logit crude and adjusted GAM models
I've some data for fitting crude and adjusted logit GAMs:
library(mgcv)
## Simulate some data...
set.seed(3);n<-400
dat <- gamSim(1,n=n)
mu <- binomial()$linkinv(dat$f/4-2)
phi <- .5
a <- mu*phi;b <- phi - a;
dat$y <- rbeta(n,a,b)
## Fitting GAMs
crude <- gam(y~s(x0),family=binomial(link="logit"),data=dat)
adj <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=binomial(link="logit"),data=dat)
Now I would intercept the value of x0
with the odds ratio (OR) 1.00 (i.e. probability 0.50). For this purpose I use visreg
with argument plot = FALSE
.
## Prepare data for ggplotting
library(visreg)
p.crude <- visreg(crude, "x0", plot = FALSE)
p.adj <- visreg(adj, "x0", plot = FALSE)
library(dplyr)
bind_rows(
mutate(p.crude$fit, Model = "crude"),
mutate(p.adj$fit, Model = "adj")
) -> fits
Ok. I gonna compute OR from LogOR. Is the following code correct?
# Compute ORs and CI from LogOR
fits$or <- exp(fits$visregFit)
fits$ci.low <- exp(fits$visregLwr)
fits$ci.up <- exp(fits$visregUpr)
Now I use approx
in order to interpolate the x0
value with OR 1.00
## Interpolate x0 which give OR 1.00 (or 50% of probability)
x.crude <- round(approx(x = crude$fitted.values, y=crude$model$x0, xout = .5)$y, 1)
x.adj <- round(approx(x = adj$fitted.values, y=adj$model$x0, xout = .5)$y, 1)
Finally, I'm plotting the two models in a single graph:
## Plotting using ggplot
library(ggplot2)
ggplot(data = fits) +
geom_vline(aes(xintercept = x.crude), size=.2, color="black")+
geom_vline(aes(xintercept = x.adj), size=.2, color="red")+
annotate(geom ="text", x= x.crude - 0.05, y=.5, label = x.crude, size=3.5) +
annotate(geom ="text", x= x.adj - 0.05, y=.5, label = x.adj, size=3.5, color="red") +
geom_ribbon(aes(x0, ymin=ci.low, ymax=ci.up, group=Model, fill=Model), alpha=.05) +
geom_line(aes(x0, or, group=Model, color=Model)) +
labs(x="X0", y="Odds ratio")+
theme_bw(16)
As you can see, only the crude model shows an intercept with OR almost equal to 1.00 (x0 = 0.9), while this never happens for the adj model.
First, how can I get an interpolation with OR that is exactly at 1?
Second...With the limitation of my statistical knowledge, it was my understanding that I should have observed an intercept with OR=1 for the adj model, as well, based on the observed values for x0
according to this model. Why is the relative curve set upwards?
r interpolation logistic-regression gam mgcv
add a comment |
I've some data for fitting crude and adjusted logit GAMs:
library(mgcv)
## Simulate some data...
set.seed(3);n<-400
dat <- gamSim(1,n=n)
mu <- binomial()$linkinv(dat$f/4-2)
phi <- .5
a <- mu*phi;b <- phi - a;
dat$y <- rbeta(n,a,b)
## Fitting GAMs
crude <- gam(y~s(x0),family=binomial(link="logit"),data=dat)
adj <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=binomial(link="logit"),data=dat)
Now I would intercept the value of x0
with the odds ratio (OR) 1.00 (i.e. probability 0.50). For this purpose I use visreg
with argument plot = FALSE
.
## Prepare data for ggplotting
library(visreg)
p.crude <- visreg(crude, "x0", plot = FALSE)
p.adj <- visreg(adj, "x0", plot = FALSE)
library(dplyr)
bind_rows(
mutate(p.crude$fit, Model = "crude"),
mutate(p.adj$fit, Model = "adj")
) -> fits
Ok. I gonna compute OR from LogOR. Is the following code correct?
# Compute ORs and CI from LogOR
fits$or <- exp(fits$visregFit)
fits$ci.low <- exp(fits$visregLwr)
fits$ci.up <- exp(fits$visregUpr)
Now I use approx
in order to interpolate the x0
value with OR 1.00
## Interpolate x0 which give OR 1.00 (or 50% of probability)
x.crude <- round(approx(x = crude$fitted.values, y=crude$model$x0, xout = .5)$y, 1)
x.adj <- round(approx(x = adj$fitted.values, y=adj$model$x0, xout = .5)$y, 1)
Finally, I'm plotting the two models in a single graph:
## Plotting using ggplot
library(ggplot2)
ggplot(data = fits) +
geom_vline(aes(xintercept = x.crude), size=.2, color="black")+
geom_vline(aes(xintercept = x.adj), size=.2, color="red")+
annotate(geom ="text", x= x.crude - 0.05, y=.5, label = x.crude, size=3.5) +
annotate(geom ="text", x= x.adj - 0.05, y=.5, label = x.adj, size=3.5, color="red") +
geom_ribbon(aes(x0, ymin=ci.low, ymax=ci.up, group=Model, fill=Model), alpha=.05) +
geom_line(aes(x0, or, group=Model, color=Model)) +
labs(x="X0", y="Odds ratio")+
theme_bw(16)
As you can see, only the crude model shows an intercept with OR almost equal to 1.00 (x0 = 0.9), while this never happens for the adj model.
First, how can I get an interpolation with OR that is exactly at 1?
Second...With the limitation of my statistical knowledge, it was my understanding that I should have observed an intercept with OR=1 for the adj model, as well, based on the observed values for x0
according to this model. Why is the relative curve set upwards?
r interpolation logistic-regression gam mgcv
No ways to have comments?
– Borexino
Nov 24 '18 at 18:02
add a comment |
I've some data for fitting crude and adjusted logit GAMs:
library(mgcv)
## Simulate some data...
set.seed(3);n<-400
dat <- gamSim(1,n=n)
mu <- binomial()$linkinv(dat$f/4-2)
phi <- .5
a <- mu*phi;b <- phi - a;
dat$y <- rbeta(n,a,b)
## Fitting GAMs
crude <- gam(y~s(x0),family=binomial(link="logit"),data=dat)
adj <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=binomial(link="logit"),data=dat)
Now I would intercept the value of x0
with the odds ratio (OR) 1.00 (i.e. probability 0.50). For this purpose I use visreg
with argument plot = FALSE
.
## Prepare data for ggplotting
library(visreg)
p.crude <- visreg(crude, "x0", plot = FALSE)
p.adj <- visreg(adj, "x0", plot = FALSE)
library(dplyr)
bind_rows(
mutate(p.crude$fit, Model = "crude"),
mutate(p.adj$fit, Model = "adj")
) -> fits
Ok. I gonna compute OR from LogOR. Is the following code correct?
# Compute ORs and CI from LogOR
fits$or <- exp(fits$visregFit)
fits$ci.low <- exp(fits$visregLwr)
fits$ci.up <- exp(fits$visregUpr)
Now I use approx
in order to interpolate the x0
value with OR 1.00
## Interpolate x0 which give OR 1.00 (or 50% of probability)
x.crude <- round(approx(x = crude$fitted.values, y=crude$model$x0, xout = .5)$y, 1)
x.adj <- round(approx(x = adj$fitted.values, y=adj$model$x0, xout = .5)$y, 1)
Finally, I'm plotting the two models in a single graph:
## Plotting using ggplot
library(ggplot2)
ggplot(data = fits) +
geom_vline(aes(xintercept = x.crude), size=.2, color="black")+
geom_vline(aes(xintercept = x.adj), size=.2, color="red")+
annotate(geom ="text", x= x.crude - 0.05, y=.5, label = x.crude, size=3.5) +
annotate(geom ="text", x= x.adj - 0.05, y=.5, label = x.adj, size=3.5, color="red") +
geom_ribbon(aes(x0, ymin=ci.low, ymax=ci.up, group=Model, fill=Model), alpha=.05) +
geom_line(aes(x0, or, group=Model, color=Model)) +
labs(x="X0", y="Odds ratio")+
theme_bw(16)
As you can see, only the crude model shows an intercept with OR almost equal to 1.00 (x0 = 0.9), while this never happens for the adj model.
First, how can I get an interpolation with OR that is exactly at 1?
Second...With the limitation of my statistical knowledge, it was my understanding that I should have observed an intercept with OR=1 for the adj model, as well, based on the observed values for x0
according to this model. Why is the relative curve set upwards?
r interpolation logistic-regression gam mgcv
I've some data for fitting crude and adjusted logit GAMs:
library(mgcv)
## Simulate some data...
set.seed(3);n<-400
dat <- gamSim(1,n=n)
mu <- binomial()$linkinv(dat$f/4-2)
phi <- .5
a <- mu*phi;b <- phi - a;
dat$y <- rbeta(n,a,b)
## Fitting GAMs
crude <- gam(y~s(x0),family=binomial(link="logit"),data=dat)
adj <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),family=binomial(link="logit"),data=dat)
Now I would intercept the value of x0
with the odds ratio (OR) 1.00 (i.e. probability 0.50). For this purpose I use visreg
with argument plot = FALSE
.
## Prepare data for ggplotting
library(visreg)
p.crude <- visreg(crude, "x0", plot = FALSE)
p.adj <- visreg(adj, "x0", plot = FALSE)
library(dplyr)
bind_rows(
mutate(p.crude$fit, Model = "crude"),
mutate(p.adj$fit, Model = "adj")
) -> fits
Ok. I gonna compute OR from LogOR. Is the following code correct?
# Compute ORs and CI from LogOR
fits$or <- exp(fits$visregFit)
fits$ci.low <- exp(fits$visregLwr)
fits$ci.up <- exp(fits$visregUpr)
Now I use approx
in order to interpolate the x0
value with OR 1.00
## Interpolate x0 which give OR 1.00 (or 50% of probability)
x.crude <- round(approx(x = crude$fitted.values, y=crude$model$x0, xout = .5)$y, 1)
x.adj <- round(approx(x = adj$fitted.values, y=adj$model$x0, xout = .5)$y, 1)
Finally, I'm plotting the two models in a single graph:
## Plotting using ggplot
library(ggplot2)
ggplot(data = fits) +
geom_vline(aes(xintercept = x.crude), size=.2, color="black")+
geom_vline(aes(xintercept = x.adj), size=.2, color="red")+
annotate(geom ="text", x= x.crude - 0.05, y=.5, label = x.crude, size=3.5) +
annotate(geom ="text", x= x.adj - 0.05, y=.5, label = x.adj, size=3.5, color="red") +
geom_ribbon(aes(x0, ymin=ci.low, ymax=ci.up, group=Model, fill=Model), alpha=.05) +
geom_line(aes(x0, or, group=Model, color=Model)) +
labs(x="X0", y="Odds ratio")+
theme_bw(16)
As you can see, only the crude model shows an intercept with OR almost equal to 1.00 (x0 = 0.9), while this never happens for the adj model.
First, how can I get an interpolation with OR that is exactly at 1?
Second...With the limitation of my statistical knowledge, it was my understanding that I should have observed an intercept with OR=1 for the adj model, as well, based on the observed values for x0
according to this model. Why is the relative curve set upwards?
r interpolation logistic-regression gam mgcv
r interpolation logistic-regression gam mgcv
edited Nov 15 '18 at 7:00
asked Nov 12 '18 at 21:59
Borexino
969
969
No ways to have comments?
– Borexino
Nov 24 '18 at 18:02
add a comment |
No ways to have comments?
– Borexino
Nov 24 '18 at 18:02
No ways to have comments?
– Borexino
Nov 24 '18 at 18:02
No ways to have comments?
– Borexino
Nov 24 '18 at 18:02
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53270721%2fodds-ratio-interpolation-of-logit-crude-and-adjusted-gam-models%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53270721%2fodds-ratio-interpolation-of-logit-crude-and-adjusted-gam-models%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
No ways to have comments?
– Borexino
Nov 24 '18 at 18:02