spark-ml normalizer loses metadata
I'm using a dataset with categorical features in PySpark which are indexed and one-hot encoded. After fitting the pipeline I extract the encoded features by using the metadata of the features column. When I include a normalizer in my pipeline I lose the metadata of my categorical features. See example below:
train.show()
+-----+---+----+----+
|admit|gre| gpa|rank|
+-----+---+----+----+
| 0.0|380|3.61| 3|
| 1.0|660|3.67| 3|
| 1.0|800| 4.0| 1|
| 1.0|640|3.19| 4|
| 0.0|520|2.93| 4|
+-----+---+----+----+
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler, Normalizer
#indexer for categorical features
rank_indexer = StringIndexer(inputCol = 'rank', outputCol = 'rank_ind', handleInvalid="skip")
#encoder for categorical features
rank_encoder = OneHotEncoder(inputCol = 'rank_ind', outputCol = 'rank_enc')
# assembler
assembler = VectorAssembler(inputCols=['gre','gpa','rank_enc'], outputCol="featuresVect")
# Create the normalizer
normalizer = Normalizer(inputCol="featuresVect", outputCol="features", p=1.0)
stages = [rank_indexer] + [rank_encoder] + [assembler] + [normalizer]
from pyspark.ml import Pipeline
final_pipeline = Pipeline(
stages = stages
)
pipelineModel = final_pipeline.fit(train)
data = pipelineModel.transform(train)
data.schema['features'].metadata
## empty dictionary
## excluding the normalizer results in this metadata:
u'ml_attr': u'attrs': u'binary': [u'idx': 2, u'name': u'rank_enc_2',
u'idx': 3, u'name': u'rank_enc_3',
u'idx': 4, u'name': u'rank_enc_4'],
u'numeric': [u'idx': 0, u'name': u'gre', u'idx': 1, u'name': u'gpa'],
u'num_attrs': 5
Is this normal behavior? How can I include a normalizer without losing this metadata?
apache-spark pyspark metadata apache-spark-ml normalize
add a comment |
I'm using a dataset with categorical features in PySpark which are indexed and one-hot encoded. After fitting the pipeline I extract the encoded features by using the metadata of the features column. When I include a normalizer in my pipeline I lose the metadata of my categorical features. See example below:
train.show()
+-----+---+----+----+
|admit|gre| gpa|rank|
+-----+---+----+----+
| 0.0|380|3.61| 3|
| 1.0|660|3.67| 3|
| 1.0|800| 4.0| 1|
| 1.0|640|3.19| 4|
| 0.0|520|2.93| 4|
+-----+---+----+----+
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler, Normalizer
#indexer for categorical features
rank_indexer = StringIndexer(inputCol = 'rank', outputCol = 'rank_ind', handleInvalid="skip")
#encoder for categorical features
rank_encoder = OneHotEncoder(inputCol = 'rank_ind', outputCol = 'rank_enc')
# assembler
assembler = VectorAssembler(inputCols=['gre','gpa','rank_enc'], outputCol="featuresVect")
# Create the normalizer
normalizer = Normalizer(inputCol="featuresVect", outputCol="features", p=1.0)
stages = [rank_indexer] + [rank_encoder] + [assembler] + [normalizer]
from pyspark.ml import Pipeline
final_pipeline = Pipeline(
stages = stages
)
pipelineModel = final_pipeline.fit(train)
data = pipelineModel.transform(train)
data.schema['features'].metadata
## empty dictionary
## excluding the normalizer results in this metadata:
u'ml_attr': u'attrs': u'binary': [u'idx': 2, u'name': u'rank_enc_2',
u'idx': 3, u'name': u'rank_enc_3',
u'idx': 4, u'name': u'rank_enc_4'],
u'numeric': [u'idx': 0, u'name': u'gre', u'idx': 1, u'name': u'gpa'],
u'num_attrs': 5
Is this normal behavior? How can I include a normalizer without losing this metadata?
apache-spark pyspark metadata apache-spark-ml normalize
add a comment |
I'm using a dataset with categorical features in PySpark which are indexed and one-hot encoded. After fitting the pipeline I extract the encoded features by using the metadata of the features column. When I include a normalizer in my pipeline I lose the metadata of my categorical features. See example below:
train.show()
+-----+---+----+----+
|admit|gre| gpa|rank|
+-----+---+----+----+
| 0.0|380|3.61| 3|
| 1.0|660|3.67| 3|
| 1.0|800| 4.0| 1|
| 1.0|640|3.19| 4|
| 0.0|520|2.93| 4|
+-----+---+----+----+
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler, Normalizer
#indexer for categorical features
rank_indexer = StringIndexer(inputCol = 'rank', outputCol = 'rank_ind', handleInvalid="skip")
#encoder for categorical features
rank_encoder = OneHotEncoder(inputCol = 'rank_ind', outputCol = 'rank_enc')
# assembler
assembler = VectorAssembler(inputCols=['gre','gpa','rank_enc'], outputCol="featuresVect")
# Create the normalizer
normalizer = Normalizer(inputCol="featuresVect", outputCol="features", p=1.0)
stages = [rank_indexer] + [rank_encoder] + [assembler] + [normalizer]
from pyspark.ml import Pipeline
final_pipeline = Pipeline(
stages = stages
)
pipelineModel = final_pipeline.fit(train)
data = pipelineModel.transform(train)
data.schema['features'].metadata
## empty dictionary
## excluding the normalizer results in this metadata:
u'ml_attr': u'attrs': u'binary': [u'idx': 2, u'name': u'rank_enc_2',
u'idx': 3, u'name': u'rank_enc_3',
u'idx': 4, u'name': u'rank_enc_4'],
u'numeric': [u'idx': 0, u'name': u'gre', u'idx': 1, u'name': u'gpa'],
u'num_attrs': 5
Is this normal behavior? How can I include a normalizer without losing this metadata?
apache-spark pyspark metadata apache-spark-ml normalize
I'm using a dataset with categorical features in PySpark which are indexed and one-hot encoded. After fitting the pipeline I extract the encoded features by using the metadata of the features column. When I include a normalizer in my pipeline I lose the metadata of my categorical features. See example below:
train.show()
+-----+---+----+----+
|admit|gre| gpa|rank|
+-----+---+----+----+
| 0.0|380|3.61| 3|
| 1.0|660|3.67| 3|
| 1.0|800| 4.0| 1|
| 1.0|640|3.19| 4|
| 0.0|520|2.93| 4|
+-----+---+----+----+
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler, Normalizer
#indexer for categorical features
rank_indexer = StringIndexer(inputCol = 'rank', outputCol = 'rank_ind', handleInvalid="skip")
#encoder for categorical features
rank_encoder = OneHotEncoder(inputCol = 'rank_ind', outputCol = 'rank_enc')
# assembler
assembler = VectorAssembler(inputCols=['gre','gpa','rank_enc'], outputCol="featuresVect")
# Create the normalizer
normalizer = Normalizer(inputCol="featuresVect", outputCol="features", p=1.0)
stages = [rank_indexer] + [rank_encoder] + [assembler] + [normalizer]
from pyspark.ml import Pipeline
final_pipeline = Pipeline(
stages = stages
)
pipelineModel = final_pipeline.fit(train)
data = pipelineModel.transform(train)
data.schema['features'].metadata
## empty dictionary
## excluding the normalizer results in this metadata:
u'ml_attr': u'attrs': u'binary': [u'idx': 2, u'name': u'rank_enc_2',
u'idx': 3, u'name': u'rank_enc_3',
u'idx': 4, u'name': u'rank_enc_4'],
u'numeric': [u'idx': 0, u'name': u'gre', u'idx': 1, u'name': u'gpa'],
u'num_attrs': 5
Is this normal behavior? How can I include a normalizer without losing this metadata?
apache-spark pyspark metadata apache-spark-ml normalize
apache-spark pyspark metadata apache-spark-ml normalize
edited Nov 13 '18 at 23:08
user6910411
33.8k976100
33.8k976100
asked Aug 15 '17 at 9:23
CherylCheryl
325
325
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
In my opinion it doesn't make much sense to use Normalizer
on One-hot encoded data in the first place. In Spark, OHE is useful for two type models:
- Multinomial Naive Bayes.
- Linear models.
In the first case normalization will render features completely useless (multinomial model can fully utilize only binary features). In the second case it will make interpretation of the model close to impossible.
Even if you ignore the above normalized data cannot be interpreted as binary features anymore, therefore discarding metadata seems to be a valid behavior.
Related to Why does StandardScaler not attach metadata to the output column?
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f45690052%2fspark-ml-normalizer-loses-metadata%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
In my opinion it doesn't make much sense to use Normalizer
on One-hot encoded data in the first place. In Spark, OHE is useful for two type models:
- Multinomial Naive Bayes.
- Linear models.
In the first case normalization will render features completely useless (multinomial model can fully utilize only binary features). In the second case it will make interpretation of the model close to impossible.
Even if you ignore the above normalized data cannot be interpreted as binary features anymore, therefore discarding metadata seems to be a valid behavior.
Related to Why does StandardScaler not attach metadata to the output column?
add a comment |
In my opinion it doesn't make much sense to use Normalizer
on One-hot encoded data in the first place. In Spark, OHE is useful for two type models:
- Multinomial Naive Bayes.
- Linear models.
In the first case normalization will render features completely useless (multinomial model can fully utilize only binary features). In the second case it will make interpretation of the model close to impossible.
Even if you ignore the above normalized data cannot be interpreted as binary features anymore, therefore discarding metadata seems to be a valid behavior.
Related to Why does StandardScaler not attach metadata to the output column?
add a comment |
In my opinion it doesn't make much sense to use Normalizer
on One-hot encoded data in the first place. In Spark, OHE is useful for two type models:
- Multinomial Naive Bayes.
- Linear models.
In the first case normalization will render features completely useless (multinomial model can fully utilize only binary features). In the second case it will make interpretation of the model close to impossible.
Even if you ignore the above normalized data cannot be interpreted as binary features anymore, therefore discarding metadata seems to be a valid behavior.
Related to Why does StandardScaler not attach metadata to the output column?
In my opinion it doesn't make much sense to use Normalizer
on One-hot encoded data in the first place. In Spark, OHE is useful for two type models:
- Multinomial Naive Bayes.
- Linear models.
In the first case normalization will render features completely useless (multinomial model can fully utilize only binary features). In the second case it will make interpretation of the model close to impossible.
Even if you ignore the above normalized data cannot be interpreted as binary features anymore, therefore discarding metadata seems to be a valid behavior.
Related to Why does StandardScaler not attach metadata to the output column?
edited Aug 15 '17 at 10:14
answered Aug 15 '17 at 10:05
user6910411user6910411
33.8k976100
33.8k976100
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f45690052%2fspark-ml-normalizer-loses-metadata%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown