Logical conjunction

























Logical conjunction
AND
Venn diagram of Logical conjunction
Definitionxydisplaystyle xyxy
Truth table(0001)displaystyle (0001)displaystyle (0001)
Logic gateAND ANSI.svg
Normal forms
Disjunctivexydisplaystyle xyxy
Conjunctivexydisplaystyle xyxy
Zhegalkin polynomialxydisplaystyle xyxy
Post's lattices
0-preservingyes
1-preservingyes
Monotoneno
Affineno
Self-dualyes



Venn diagram of A∧B∧Cdisplaystyle Aland Bland Cdisplaystyle Aland Bland C


In logic, mathematics and linguistics, And (∧) is the truth-functional operator of logical conjunction; the and of a set of operands is true if and only if all of its operands are true. The logical connective that represents this operator is typically written as or .


A∧Bdisplaystyle Aland BAland B is true only if Adisplaystyle AA is true and Bdisplaystyle BB is true.


An operand of a conjunction is a conjunct.


The term "logical conjunction" is also used for the greatest lower bound in lattice theory.


Related concepts in other fields are:


  • In natural language, the coordinating conjunction "and".

  • In programming languages, the short-circuit and control structure.

  • In set theory, intersection.

  • In predicate logic, universal quantification.



Contents





  • 1 Notation


  • 2 Definition

    • 2.1 Truth table


    • 2.2 Defined by other operators



  • 3 Introduction and elimination rules


  • 4 Properties


  • 5 Applications in computer engineering


  • 6 Set-theoretic correspondence


  • 7 Natural language


  • 8 See also


  • 9 References


  • 10 External links




Notation


And is usually denoted by an infix operator: in mathematics and logic, it is denoted by , & or × ; in electronics, ; and in programming languages, &, &&, or and. In Jan Łukasiewicz's prefix notation for logic, the operator is K, for Polish koniunkcja.[1]



Definition


Logical conjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are true.


The conjunctive identity is 1, which is to say that AND-ing an expression with 1 will never change the value of the expression. In keeping with the concept of vacuous truth, when conjunction is defined as an operator or function of arbitrary arity, the empty conjunction (AND-ing over an empty set of operands) is often defined as having the result 1.



Truth table




Conjunctions of the arguments on the left — The true bits form a Sierpinski triangle.


The truth table of A∧Bdisplaystyle Aland BAland B:

















Adisplaystyle AABdisplaystyle BB
A∧Bdisplaystyle Awedge BAwedge B
TTT
TFF
FTF
FFF


Defined by other operators


In systems where logical conjunction is not a primitive, it may be defined as[2]


A∧B=¬(A→¬B)displaystyle Aland B=neg (Ato neg B)displaystyle Aland B=neg (Ato neg B)


Introduction and elimination rules


As a rule of inference, conjunction Introduction is a classically valid, simple argument form. The argument form has two premises, A and B. Intuitively, it permits the inference of their conjunction.



A,


B.

Therefore, A and B.

or in logical operator notation:


A,displaystyle A,A,

Bdisplaystyle BB

⊢A∧Bdisplaystyle vdash Aland Bdisplaystyle vdash Aland B

Here is an example of an argument that fits the form conjunction introduction:


Bob likes apples.

Bob likes oranges.

Therefore, Bob likes apples and oranges.

Conjunction elimination is another classically valid, simple argument form. Intuitively, it permits the inference from any conjunction of either element of that conjunction.



A and B.

Therefore, A.

...or alternately,



A and B.

Therefore, B.

In logical operator notation:


A∧Bdisplaystyle Aland Bdisplaystyle Aland B

⊢Adisplaystyle vdash Avdash A

...or alternately,


A∧Bdisplaystyle Aland Bdisplaystyle Aland B

⊢Bdisplaystyle vdash Bvdash B


Properties


commutativity: yes









A∧Bdisplaystyle Aland BAland B
    ⇔displaystyle Leftrightarrow Leftrightarrow     

B∧Adisplaystyle Bland Adisplaystyle Bland A

Venn0001.svg
    ⇔displaystyle Leftrightarrow Leftrightarrow     

Venn0001.svg

associativity: yes





















 Adisplaystyle ~A~A

   ∧   displaystyle ~~~land ~~~displaystyle ~~~land ~~~

(B∧C)displaystyle (Bland C)displaystyle (Bland C)
    ⇔displaystyle Leftrightarrow Leftrightarrow     



(A∧B)displaystyle (Aland B)(Aland B)

   ∧   displaystyle ~~~land ~~~displaystyle ~~~land ~~~

 Cdisplaystyle ~C~C

Venn 0101 0101.svg

   ∧   displaystyle ~~~land ~~~displaystyle ~~~land ~~~

Venn 0000 0011.svg
    ⇔displaystyle Leftrightarrow Leftrightarrow     

Venn 0000 0001.svg
    ⇔displaystyle Leftrightarrow Leftrightarrow     

Venn 0001 0001.svg

   ∧   displaystyle ~~~land ~~~displaystyle ~~~land ~~~

Venn 0000 1111.svg

distributivity: with various operations, especially with or





















 Adisplaystyle ~A~A

∧displaystyle land land

(B∨C)displaystyle (Blor C)displaystyle (Blor C)
    ⇔displaystyle Leftrightarrow Leftrightarrow     



(A∧B)displaystyle (Aland B)(Aland B)

∨displaystyle lor lor

(A∧C)displaystyle (Aland C)displaystyle (Aland C)

Venn 0101 0101.svg

∧displaystyle land land

Venn 0011 1111.svg
    ⇔displaystyle Leftrightarrow Leftrightarrow     

Venn 0001 0101.svg
    ⇔displaystyle Leftrightarrow Leftrightarrow     

Venn 0001 0001.svg

∨displaystyle lor lor

Venn 0000 0101.svg

idempotency: yes













 A displaystyle ~A~~A~

 ∧ displaystyle ~land ~displaystyle ~land ~

 A displaystyle ~A~~A~
    ⇔displaystyle Leftrightarrow Leftrightarrow     

A displaystyle A~A~

Venn01.svg

 ∧ displaystyle ~land ~displaystyle ~land ~

Venn01.svg
    ⇔displaystyle Leftrightarrow Leftrightarrow     

Venn01.svg

monotonicity: yes

















A→Bdisplaystyle Arightarrow BArightarrow B
    ⇒displaystyle Rightarrow Rightarrow     



(A∧C)displaystyle (Aland C)displaystyle (Aland C)

→displaystyle rightarrow rightarrow

(B∧C)displaystyle (Bland C)displaystyle (Bland C)

Venn 1011 1011.svg
    ⇒displaystyle Rightarrow Rightarrow     

Venn 1111 1011.svg
    ⇔displaystyle Leftrightarrow Leftrightarrow     

Venn 0000 0101.svg

→displaystyle rightarrow rightarrow

Venn 0000 0011.svg

truth-preserving: yes

When all inputs are true, the output is true.












A∧Bdisplaystyle Aland BAland B
    ⇒displaystyle Rightarrow Rightarrow     

A∧Bdisplaystyle Aland BAland B

Venn0001.svg
    ⇒displaystyle Rightarrow Rightarrow     

Venn0001.svg



(to be tested)

falsehood-preserving: yes

When all inputs are false, the output is false.












A∧Bdisplaystyle Aland BAland B
    ⇒displaystyle Rightarrow Rightarrow     

A∨Bdisplaystyle Alor BAlor B

Venn0001.svg
    ⇒displaystyle Rightarrow Rightarrow     

Venn0111.svg

(to be tested)


Walsh spectrum: (1,-1,-1,1)


Nonlinearity: 1 (the function is bent)


If using binary values for true (1) and false (0), then logical conjunction works exactly like normal arithmetic multiplication.



Applications in computer engineering




AND logic gate


In high-level computer programming and digital electronics, logical conjunction is commonly represented by an infix operator, usually as a keyword such as "AND", an algebraic multiplication, or the ampersand symbol "&". Many languages also provide short-circuit control structures corresponding to logical conjunction.


Logical conjunction is often used for bitwise operations, where 0 corresponds to false and 1 to true:



  • 0 AND 0  =  0,


  • 0 AND 1  =  0,


  • 1 AND 0  =  0,


  • 1 AND 1  =  1.

The operation can also be applied to two binary words viewed as bitstrings of equal length, by taking the bitwise AND of each pair of bits at corresponding positions. For example:



  • 11000110 AND 10100011  =  10000010.

This can be used to select part of a bitstring using a bit mask. For example, 10011101 AND 00001000  =  00001000 extracts the fifth bit of an 8-bit bitstring.


In computer networking, bit masks are used to derive the network address of a subnet within an existing network from a given IP address, by ANDing the IP address and the subnet mask.


Logical conjunction "AND" is also used in SQL operations to form database queries.


The Curry–Howard correspondence relates logical conjunction to product types.



Set-theoretic correspondence


The membership of an element of an intersection set in set theory is defined in terms of a logical conjunction: xAB if and only if (xA) ∧ (xB). Through this correspondence, set-theoretic intersection shares several properties with logical conjunction, such as associativity, commutativity, and idempotence.



Natural language


As with other notions formalized in mathematical logic, the logical conjunction and is related to, but not the same as, the grammatical conjunction and in natural languages.


English "and" has properties not captured by logical conjunction. For example, "and" sometimes implies order. For example, "They got married and had a child" in common discourse means that the marriage came before the child. The word "and" can also imply a partition of a thing into parts, as "The American flag is red, white, and blue." Here it is not meant that the flag is at once red, white, and blue, but rather that it has a part of each color.



See also



  • And-inverter graph

  • AND gate

  • Binary and

  • Bitwise AND

  • Boolean algebra (logic)

  • Boolean algebra topics

  • Boolean conjunctive query

  • Boolean domain

  • Boolean function

  • Boolean-valued function

  • Conjunction introduction

  • Conjunction elimination

  • De Morgan's laws

  • First-order logic

  • Fréchet inequalities

  • Grammatical conjunction

  • Logical disjunction

  • Logical negation

  • Logical graph

  • Logical value

  • Operation

  • Peano–Russell notation

  • Propositional calculus



References




  1. ^ Józef Maria Bocheński (1959), A Précis of Mathematical Logic, translated by Otto Bird from the French and German editions, Dordrecht, North Holland: D. Reidel, passim.


  2. ^ Smith, Peter. "Types of proof system" (PDF). p. 4..mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em




External links



  • Hazewinkel, Michiel, ed. (2001) [1994], "Conjunction", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4

  • Wolfram MathWorld: Conjunction


  • "Property and truth table of AND propositions". Archived from the original on May 6, 2000.








這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

Museum of Modern and Contemporary Art of Trento and Rovereto