How to Group by column value in Pandas Data frame
I have pandas dataframe like this. I want group by App_Name in seperate variable
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.orange.thescore 2018-10-13 2034.611964 8273607
com.number.studio 2018-10-13 1807.756545 33736740
com.orange.thescore 2018-10-14 4671.930435 38575556
com.number.studio 2018-10-14 3533.461547 38726087
com.banana.com 2018-10-14 2920.33747 86230313
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.number.studio 2018-10-15 2044.759823 76526368
com.apple.tiles2 2018-10-16 2610.214035 30611434
com.alpha.studio 2018-10-16 1731.429858 11643154
com.banana.com 2018-10-16 1601.387403 13781285
com.alpha.studio 2018-10-17 2769.373388 13198984
com.banana.com 2018-10-17 2205.359489 21974901
com.orange.thescore 2018-10-17 1820.852862 7565015
com.alpha.studio 2018-10-18 2784.822039 24217875
com.banana.com 2018-10-18 2545.899329 28361412
com.orange.thescore 2018-10-18 2052.207745 7544861
I want to group data by App_Name and stored in sepearte list or dataframe for each App_Name, something like this given below:
App_Name Date Response Gross Revenue
com.alpha.studio 2018-10-16 1731.429858 11643154
com.alpha.studio 2018-10-17 2769.373388 13198984
com.alpha.studio 2018-10-18 2784.822039 24217875
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.apple.tiles2 2018-10-16 2610.214035 30611434
App_Name Date Response Gross Revenue
com.banana.com 2018-10-14 2920.33747 86230313
com.banana.com 2018-10-16 1601.387403 13781285
com.banana.com 2018-10-17 2205.359489 21974901
com.banana.com 2018-10-18 2545.899329 28361412
App_Name Date Response Gross Revenue
com.number.studio 2018-10-14 3533.461547 38726087
com.number.studio 2018-10-13 1807.756545 33736740
com.number.studio 2018-10-15 2044.759823 76526368
App_Name Date Response Gross Revenue
com.orange.thescore 2018-10-13 2034.611964 8273607
com.orange.thescore 2018-10-14 4671.930435 38575556
com.orange.thescore 2018-10-17 1820.852862 7565015
com.orange.thescore 2018-10-18 2052.207745 7544861
python pandas pandas-groupby data-science
add a comment |
I have pandas dataframe like this. I want group by App_Name in seperate variable
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.orange.thescore 2018-10-13 2034.611964 8273607
com.number.studio 2018-10-13 1807.756545 33736740
com.orange.thescore 2018-10-14 4671.930435 38575556
com.number.studio 2018-10-14 3533.461547 38726087
com.banana.com 2018-10-14 2920.33747 86230313
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.number.studio 2018-10-15 2044.759823 76526368
com.apple.tiles2 2018-10-16 2610.214035 30611434
com.alpha.studio 2018-10-16 1731.429858 11643154
com.banana.com 2018-10-16 1601.387403 13781285
com.alpha.studio 2018-10-17 2769.373388 13198984
com.banana.com 2018-10-17 2205.359489 21974901
com.orange.thescore 2018-10-17 1820.852862 7565015
com.alpha.studio 2018-10-18 2784.822039 24217875
com.banana.com 2018-10-18 2545.899329 28361412
com.orange.thescore 2018-10-18 2052.207745 7544861
I want to group data by App_Name and stored in sepearte list or dataframe for each App_Name, something like this given below:
App_Name Date Response Gross Revenue
com.alpha.studio 2018-10-16 1731.429858 11643154
com.alpha.studio 2018-10-17 2769.373388 13198984
com.alpha.studio 2018-10-18 2784.822039 24217875
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.apple.tiles2 2018-10-16 2610.214035 30611434
App_Name Date Response Gross Revenue
com.banana.com 2018-10-14 2920.33747 86230313
com.banana.com 2018-10-16 1601.387403 13781285
com.banana.com 2018-10-17 2205.359489 21974901
com.banana.com 2018-10-18 2545.899329 28361412
App_Name Date Response Gross Revenue
com.number.studio 2018-10-14 3533.461547 38726087
com.number.studio 2018-10-13 1807.756545 33736740
com.number.studio 2018-10-15 2044.759823 76526368
App_Name Date Response Gross Revenue
com.orange.thescore 2018-10-13 2034.611964 8273607
com.orange.thescore 2018-10-14 4671.930435 38575556
com.orange.thescore 2018-10-17 1820.852862 7565015
com.orange.thescore 2018-10-18 2052.207745 7544861
python pandas pandas-groupby data-science
1
df.groupby('App_Name')
?
– juanpa.arrivillaga
Nov 12 at 10:21
5
I'd like to know how this question has 4 upvotes in 3 minutes.
– coldspeed
Nov 12 at 10:22
add a comment |
I have pandas dataframe like this. I want group by App_Name in seperate variable
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.orange.thescore 2018-10-13 2034.611964 8273607
com.number.studio 2018-10-13 1807.756545 33736740
com.orange.thescore 2018-10-14 4671.930435 38575556
com.number.studio 2018-10-14 3533.461547 38726087
com.banana.com 2018-10-14 2920.33747 86230313
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.number.studio 2018-10-15 2044.759823 76526368
com.apple.tiles2 2018-10-16 2610.214035 30611434
com.alpha.studio 2018-10-16 1731.429858 11643154
com.banana.com 2018-10-16 1601.387403 13781285
com.alpha.studio 2018-10-17 2769.373388 13198984
com.banana.com 2018-10-17 2205.359489 21974901
com.orange.thescore 2018-10-17 1820.852862 7565015
com.alpha.studio 2018-10-18 2784.822039 24217875
com.banana.com 2018-10-18 2545.899329 28361412
com.orange.thescore 2018-10-18 2052.207745 7544861
I want to group data by App_Name and stored in sepearte list or dataframe for each App_Name, something like this given below:
App_Name Date Response Gross Revenue
com.alpha.studio 2018-10-16 1731.429858 11643154
com.alpha.studio 2018-10-17 2769.373388 13198984
com.alpha.studio 2018-10-18 2784.822039 24217875
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.apple.tiles2 2018-10-16 2610.214035 30611434
App_Name Date Response Gross Revenue
com.banana.com 2018-10-14 2920.33747 86230313
com.banana.com 2018-10-16 1601.387403 13781285
com.banana.com 2018-10-17 2205.359489 21974901
com.banana.com 2018-10-18 2545.899329 28361412
App_Name Date Response Gross Revenue
com.number.studio 2018-10-14 3533.461547 38726087
com.number.studio 2018-10-13 1807.756545 33736740
com.number.studio 2018-10-15 2044.759823 76526368
App_Name Date Response Gross Revenue
com.orange.thescore 2018-10-13 2034.611964 8273607
com.orange.thescore 2018-10-14 4671.930435 38575556
com.orange.thescore 2018-10-17 1820.852862 7565015
com.orange.thescore 2018-10-18 2052.207745 7544861
python pandas pandas-groupby data-science
I have pandas dataframe like this. I want group by App_Name in seperate variable
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.orange.thescore 2018-10-13 2034.611964 8273607
com.number.studio 2018-10-13 1807.756545 33736740
com.orange.thescore 2018-10-14 4671.930435 38575556
com.number.studio 2018-10-14 3533.461547 38726087
com.banana.com 2018-10-14 2920.33747 86230313
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.number.studio 2018-10-15 2044.759823 76526368
com.apple.tiles2 2018-10-16 2610.214035 30611434
com.alpha.studio 2018-10-16 1731.429858 11643154
com.banana.com 2018-10-16 1601.387403 13781285
com.alpha.studio 2018-10-17 2769.373388 13198984
com.banana.com 2018-10-17 2205.359489 21974901
com.orange.thescore 2018-10-17 1820.852862 7565015
com.alpha.studio 2018-10-18 2784.822039 24217875
com.banana.com 2018-10-18 2545.899329 28361412
com.orange.thescore 2018-10-18 2052.207745 7544861
I want to group data by App_Name and stored in sepearte list or dataframe for each App_Name, something like this given below:
App_Name Date Response Gross Revenue
com.alpha.studio 2018-10-16 1731.429858 11643154
com.alpha.studio 2018-10-17 2769.373388 13198984
com.alpha.studio 2018-10-18 2784.822039 24217875
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.apple.tiles2 2018-10-16 2610.214035 30611434
App_Name Date Response Gross Revenue
com.banana.com 2018-10-14 2920.33747 86230313
com.banana.com 2018-10-16 1601.387403 13781285
com.banana.com 2018-10-17 2205.359489 21974901
com.banana.com 2018-10-18 2545.899329 28361412
App_Name Date Response Gross Revenue
com.number.studio 2018-10-14 3533.461547 38726087
com.number.studio 2018-10-13 1807.756545 33736740
com.number.studio 2018-10-15 2044.759823 76526368
App_Name Date Response Gross Revenue
com.orange.thescore 2018-10-13 2034.611964 8273607
com.orange.thescore 2018-10-14 4671.930435 38575556
com.orange.thescore 2018-10-17 1820.852862 7565015
com.orange.thescore 2018-10-18 2052.207745 7544861
python pandas pandas-groupby data-science
python pandas pandas-groupby data-science
asked Nov 12 at 10:18
hepiz
1478
1478
1
df.groupby('App_Name')
?
– juanpa.arrivillaga
Nov 12 at 10:21
5
I'd like to know how this question has 4 upvotes in 3 minutes.
– coldspeed
Nov 12 at 10:22
add a comment |
1
df.groupby('App_Name')
?
– juanpa.arrivillaga
Nov 12 at 10:21
5
I'd like to know how this question has 4 upvotes in 3 minutes.
– coldspeed
Nov 12 at 10:22
1
1
df.groupby('App_Name')
?– juanpa.arrivillaga
Nov 12 at 10:21
df.groupby('App_Name')
?– juanpa.arrivillaga
Nov 12 at 10:21
5
5
I'd like to know how this question has 4 upvotes in 3 minutes.
– coldspeed
Nov 12 at 10:22
I'd like to know how this question has 4 upvotes in 3 minutes.
– coldspeed
Nov 12 at 10:22
add a comment |
1 Answer
1
active
oldest
votes
Convert groupby
object to dictionary of DataFrames:
d = dict(tuple(df.groupby('App_Name')))
print (d['com.alpha.studio'])
App_Name Date Response Gross Revenue
9 com.alpha.studio 2018-10-16 1731.429858 11643154 NaN
11 com.alpha.studio 2018-10-17 2769.373388 13198984 NaN
14 com.alpha.studio 2018-10-18 2784.822039 24217875 NaN
EDIT:
d1 =
for k, v in d.items():
d1[k] = v['Gross Revenue'].rolling(2).mean()
2
do you have any idea whydict(df.groupby('App_Name')
is giving anTypeError: attribute of type 'str' is not callable
error? It's very strange
– juanpa.arrivillaga
Nov 12 at 10:32
@juanpa.arrivillaga - Sorry, not idea.
– jezrael
Nov 12 at 11:03
@ jezrael I want to calculate the rolling mean for gross revenue and store separately date frame with calculated mean and corresponding date. can please help in it
– hepiz
Nov 13 at 12:22
1
What is formula for standard DataFrame?
– jezrael
Nov 13 at 12:22
1
@hamsa - check edited answer. Is possible loop by each DataFrame, caunt values and append back.
– jezrael
Nov 13 at 12:37
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53260050%2fhow-to-group-by-column-value-in-pandas-data-frame%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Convert groupby
object to dictionary of DataFrames:
d = dict(tuple(df.groupby('App_Name')))
print (d['com.alpha.studio'])
App_Name Date Response Gross Revenue
9 com.alpha.studio 2018-10-16 1731.429858 11643154 NaN
11 com.alpha.studio 2018-10-17 2769.373388 13198984 NaN
14 com.alpha.studio 2018-10-18 2784.822039 24217875 NaN
EDIT:
d1 =
for k, v in d.items():
d1[k] = v['Gross Revenue'].rolling(2).mean()
2
do you have any idea whydict(df.groupby('App_Name')
is giving anTypeError: attribute of type 'str' is not callable
error? It's very strange
– juanpa.arrivillaga
Nov 12 at 10:32
@juanpa.arrivillaga - Sorry, not idea.
– jezrael
Nov 12 at 11:03
@ jezrael I want to calculate the rolling mean for gross revenue and store separately date frame with calculated mean and corresponding date. can please help in it
– hepiz
Nov 13 at 12:22
1
What is formula for standard DataFrame?
– jezrael
Nov 13 at 12:22
1
@hamsa - check edited answer. Is possible loop by each DataFrame, caunt values and append back.
– jezrael
Nov 13 at 12:37
|
show 1 more comment
Convert groupby
object to dictionary of DataFrames:
d = dict(tuple(df.groupby('App_Name')))
print (d['com.alpha.studio'])
App_Name Date Response Gross Revenue
9 com.alpha.studio 2018-10-16 1731.429858 11643154 NaN
11 com.alpha.studio 2018-10-17 2769.373388 13198984 NaN
14 com.alpha.studio 2018-10-18 2784.822039 24217875 NaN
EDIT:
d1 =
for k, v in d.items():
d1[k] = v['Gross Revenue'].rolling(2).mean()
2
do you have any idea whydict(df.groupby('App_Name')
is giving anTypeError: attribute of type 'str' is not callable
error? It's very strange
– juanpa.arrivillaga
Nov 12 at 10:32
@juanpa.arrivillaga - Sorry, not idea.
– jezrael
Nov 12 at 11:03
@ jezrael I want to calculate the rolling mean for gross revenue and store separately date frame with calculated mean and corresponding date. can please help in it
– hepiz
Nov 13 at 12:22
1
What is formula for standard DataFrame?
– jezrael
Nov 13 at 12:22
1
@hamsa - check edited answer. Is possible loop by each DataFrame, caunt values and append back.
– jezrael
Nov 13 at 12:37
|
show 1 more comment
Convert groupby
object to dictionary of DataFrames:
d = dict(tuple(df.groupby('App_Name')))
print (d['com.alpha.studio'])
App_Name Date Response Gross Revenue
9 com.alpha.studio 2018-10-16 1731.429858 11643154 NaN
11 com.alpha.studio 2018-10-17 2769.373388 13198984 NaN
14 com.alpha.studio 2018-10-18 2784.822039 24217875 NaN
EDIT:
d1 =
for k, v in d.items():
d1[k] = v['Gross Revenue'].rolling(2).mean()
Convert groupby
object to dictionary of DataFrames:
d = dict(tuple(df.groupby('App_Name')))
print (d['com.alpha.studio'])
App_Name Date Response Gross Revenue
9 com.alpha.studio 2018-10-16 1731.429858 11643154 NaN
11 com.alpha.studio 2018-10-17 2769.373388 13198984 NaN
14 com.alpha.studio 2018-10-18 2784.822039 24217875 NaN
EDIT:
d1 =
for k, v in d.items():
d1[k] = v['Gross Revenue'].rolling(2).mean()
edited Nov 13 at 12:36
answered Nov 12 at 10:30
jezrael
319k22258337
319k22258337
2
do you have any idea whydict(df.groupby('App_Name')
is giving anTypeError: attribute of type 'str' is not callable
error? It's very strange
– juanpa.arrivillaga
Nov 12 at 10:32
@juanpa.arrivillaga - Sorry, not idea.
– jezrael
Nov 12 at 11:03
@ jezrael I want to calculate the rolling mean for gross revenue and store separately date frame with calculated mean and corresponding date. can please help in it
– hepiz
Nov 13 at 12:22
1
What is formula for standard DataFrame?
– jezrael
Nov 13 at 12:22
1
@hamsa - check edited answer. Is possible loop by each DataFrame, caunt values and append back.
– jezrael
Nov 13 at 12:37
|
show 1 more comment
2
do you have any idea whydict(df.groupby('App_Name')
is giving anTypeError: attribute of type 'str' is not callable
error? It's very strange
– juanpa.arrivillaga
Nov 12 at 10:32
@juanpa.arrivillaga - Sorry, not idea.
– jezrael
Nov 12 at 11:03
@ jezrael I want to calculate the rolling mean for gross revenue and store separately date frame with calculated mean and corresponding date. can please help in it
– hepiz
Nov 13 at 12:22
1
What is formula for standard DataFrame?
– jezrael
Nov 13 at 12:22
1
@hamsa - check edited answer. Is possible loop by each DataFrame, caunt values and append back.
– jezrael
Nov 13 at 12:37
2
2
do you have any idea why
dict(df.groupby('App_Name')
is giving an TypeError: attribute of type 'str' is not callable
error? It's very strange– juanpa.arrivillaga
Nov 12 at 10:32
do you have any idea why
dict(df.groupby('App_Name')
is giving an TypeError: attribute of type 'str' is not callable
error? It's very strange– juanpa.arrivillaga
Nov 12 at 10:32
@juanpa.arrivillaga - Sorry, not idea.
– jezrael
Nov 12 at 11:03
@juanpa.arrivillaga - Sorry, not idea.
– jezrael
Nov 12 at 11:03
@ jezrael I want to calculate the rolling mean for gross revenue and store separately date frame with calculated mean and corresponding date. can please help in it
– hepiz
Nov 13 at 12:22
@ jezrael I want to calculate the rolling mean for gross revenue and store separately date frame with calculated mean and corresponding date. can please help in it
– hepiz
Nov 13 at 12:22
1
1
What is formula for standard DataFrame?
– jezrael
Nov 13 at 12:22
What is formula for standard DataFrame?
– jezrael
Nov 13 at 12:22
1
1
@hamsa - check edited answer. Is possible loop by each DataFrame, caunt values and append back.
– jezrael
Nov 13 at 12:37
@hamsa - check edited answer. Is possible loop by each DataFrame, caunt values and append back.
– jezrael
Nov 13 at 12:37
|
show 1 more comment
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53260050%2fhow-to-group-by-column-value-in-pandas-data-frame%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
df.groupby('App_Name')
?– juanpa.arrivillaga
Nov 12 at 10:21
5
I'd like to know how this question has 4 upvotes in 3 minutes.
– coldspeed
Nov 12 at 10:22