Krull–Schmidt category


In category theory, a Krull–Schmidt category is a generalization of categories in which the Krull–Schmidt theorem holds. They arise, for example, in the study of finite-dimensional modules over an algebra.




Contents





  • 1 Definition


  • 2 Properties


  • 3 Examples

    • 3.1 A non-example



  • 4 See also


  • 5 Notes


  • 6 References




Definition


Let C be an additive category, or more generally an additive R-linear category for a commutative ring R. We call C a Krull–Schmidt category provided that every object decomposes into a finite direct sum of objects having local endomorphism rings. Equivalently, C has split idempotents and the endomorphism ring of every object is semiperfect.



Properties


One has the analogue of the Krull–Schmidt theorem in Krull–Schmidt categories:


An object is called indecomposable if it is not isomorphic to a direct sum of two nonzero objects. In a Krull–Schmidt category we have that


  • an object is indecomposable if and only if its endomorphism ring is local.

  • every object is isomorphic to a finite direct sum of indecomposable objects.

  • if X1⊕X2⊕⋯⊕Xr≅Y1⊕Y2⊕⋯⊕Ysdisplaystyle X_1oplus X_2oplus cdots oplus X_rcong Y_1oplus Y_2oplus cdots oplus Y_sX_1 oplus X_2 oplus cdots oplus X_r cong Y_1 oplus Y_2 oplus cdots oplus Y_s where the Xidisplaystyle X_iX_i and Yjdisplaystyle Y_jY_j are all indecomposable, then r=sdisplaystyle r=sr=s, and there exists a permutation πdisplaystyle pi pi such that Xπ(i)≅Yidisplaystyle X_pi (i)cong Y_iX_pi(i) cong Y_i for all i.

One can define the Auslander–Reiten quiver of a Krull–Schmidt category.



Examples


  • An abelian category in which every object has finite length.[1] This includes as a special case the category of finite-dimensional modules over an algebra.

  • The category of finitely-generated modules over a finite[2]R-algebra, where R is a commutative Noetherian complete local ring.[3]

  • The category of coherent sheaves on a complete variety over an algebraically-closed field.[4]


A non-example


The category of finitely-generated projective modules over the integers has split idempotents, and every module is isomorphic to a finite direct sum of copies of the regular module, the number being given by the rank. Thus the category has unique decomposition into indecomposables, but is not Krull-Schmidt since the regular module does not have a local endomorphism ring.



See also


  • Quiver

  • Karoubi envelope


Notes



  1. ^ This is the classical case, see for example Krause (2012), Corollary 3.3.3.


  2. ^ A finite R-algebra is an R-algebra which is finitely generated as an R-module.


  3. ^ Reiner (2003), Section 6, Exercises 5 and 6, p. 88.


  4. ^ Atiyah (1956), Theorem 2.



References


  • Michael Atiyah (1956) On the Krull-Schmidt theorem with application to sheaves Bull. Soc. Math. France 84, 307–317.

  • Henning Krause, Krull-Remak-Schmidt categories and projective covers, May 2012.

  • Irving Reiner (2003) Maximal orders. Corrected reprint of the 1975 original. With a foreword by M. J. Taylor. London Mathematical Society Monographs. New Series, 28. The Clarendon Press, Oxford University Press, Oxford. .mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
    ISBN 0-19-852673-3.

  • Claus Michael Ringel (1984) Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics 1099, Springer-Verlag, 1984.


這個網誌中的熱門文章

How to read a connectionString WITH PROVIDER in .NET Core?

In R, how to develop a multiplot heatmap.2 figure showing key labels successfully

Museum of Modern and Contemporary Art of Trento and Rovereto