dataframe from hive table to iterate through each element for some operation and write in df,rdd,list
I have a DF
with input data as below:
+----+----+
|col1|col2|
+----+--------+
| abc|2E2J2K2F|
| bcd| 2K3D|
+----+--------+
My expected expected output is:
+-----+-----+
| col1| col2|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
+----+------+
scala list apache-spark dataframe rdd
add a comment |
I have a DF
with input data as below:
+----+----+
|col1|col2|
+----+--------+
| abc|2E2J2K2F|
| bcd| 2K3D|
+----+--------+
My expected expected output is:
+-----+-----+
| col1| col2|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
+----+------+
scala list apache-spark dataframe rdd
|col1|col2| +----+--------+ | abc|2E2J2K2F| | bcd| 2K3D| +----+--------+ expected output +-----+-----+ | col1| col2| +----+------+ | abc| 2E| | abc| 2J| | abc| 2K| | abc| 2F| | bcd| 2K| | bcd| 3D| +----+------+ +----+------+
– Arif Rizwan
Nov 14 '18 at 22:26
add a comment |
I have a DF
with input data as below:
+----+----+
|col1|col2|
+----+--------+
| abc|2E2J2K2F|
| bcd| 2K3D|
+----+--------+
My expected expected output is:
+-----+-----+
| col1| col2|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
+----+------+
scala list apache-spark dataframe rdd
I have a DF
with input data as below:
+----+----+
|col1|col2|
+----+--------+
| abc|2E2J2K2F|
| bcd| 2K3D|
+----+--------+
My expected expected output is:
+-----+-----+
| col1| col2|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
+----+------+
scala list apache-spark dataframe rdd
scala list apache-spark dataframe rdd
edited Nov 15 '18 at 0:28
bcperth
2,0351614
2,0351614
asked Nov 14 '18 at 22:21
Arif RizwanArif Rizwan
32
32
|col1|col2| +----+--------+ | abc|2E2J2K2F| | bcd| 2K3D| +----+--------+ expected output +-----+-----+ | col1| col2| +----+------+ | abc| 2E| | abc| 2J| | abc| 2K| | abc| 2F| | bcd| 2K| | bcd| 3D| +----+------+ +----+------+
– Arif Rizwan
Nov 14 '18 at 22:26
add a comment |
|col1|col2| +----+--------+ | abc|2E2J2K2F| | bcd| 2K3D| +----+--------+ expected output +-----+-----+ | col1| col2| +----+------+ | abc| 2E| | abc| 2J| | abc| 2K| | abc| 2F| | bcd| 2K| | bcd| 3D| +----+------+ +----+------+
– Arif Rizwan
Nov 14 '18 at 22:26
|col1|col2| +----+--------+ | abc|2E2J2K2F| | bcd| 2K3D| +----+--------+ expected output +-----+-----+ | col1| col2| +----+------+ | abc| 2E| | abc| 2J| | abc| 2K| | abc| 2F| | bcd| 2K| | bcd| 3D| +----+------+ +----+------+
– Arif Rizwan
Nov 14 '18 at 22:26
|col1|col2| +----+--------+ | abc|2E2J2K2F| | bcd| 2K3D| +----+--------+ expected output +-----+-----+ | col1| col2| +----+------+ | abc| 2E| | abc| 2J| | abc| 2K| | abc| 2F| | bcd| 2K| | bcd| 3D| +----+------+ +----+------+
– Arif Rizwan
Nov 14 '18 at 22:26
add a comment |
2 Answers
2
active
oldest
votes
Use udf() for splitting the string and then explode it. Check this out:
scala> val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
scala>
Update:
the split2() is just splitting the string by 2 bytes each and creating an array.
The explode functions duplicates the row based on the length of the array, giving each index value for all the rows.
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> "12345678".sliding(4,4).toArray
res171: Array[String] = Array(1234, 5678)
rror: type mismatch; [ERROR] found : Symbol [ERROR] required: org.apache.spark.sql.Column [ERROR] df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show [ERROR] ^ [ERROR] one error found i have scala 2.12.x and spark 1.6.x(working environment)
– Arif Rizwan
Nov 15 '18 at 14:32
what is your df.schema?
– stack0114106
Nov 15 '18 at 14:35
spark 1.6 old.. I don't think it supports udf functions..please consider using spark 2.x versions
– stack0114106
Nov 15 '18 at 14:38
Sorry, couldn't able to do as we have CDH 5.14. parcel,if any any alternative please suggest
– Arif Rizwan
Nov 15 '18 at 14:44
this cloudera version might have spark 2.x.. you might be launching "spark-shell", pls try launching using "spark2-shell". Also in which step you are getting error? is it udf()?
– stack0114106
Nov 15 '18 at 14:48
|
show 3 more comments
val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2(df.col("col2")))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53309613%2fdataframe-from-hive-table-to-iterate-through-each-element-for-some-operation-and%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Use udf() for splitting the string and then explode it. Check this out:
scala> val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
scala>
Update:
the split2() is just splitting the string by 2 bytes each and creating an array.
The explode functions duplicates the row based on the length of the array, giving each index value for all the rows.
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> "12345678".sliding(4,4).toArray
res171: Array[String] = Array(1234, 5678)
rror: type mismatch; [ERROR] found : Symbol [ERROR] required: org.apache.spark.sql.Column [ERROR] df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show [ERROR] ^ [ERROR] one error found i have scala 2.12.x and spark 1.6.x(working environment)
– Arif Rizwan
Nov 15 '18 at 14:32
what is your df.schema?
– stack0114106
Nov 15 '18 at 14:35
spark 1.6 old.. I don't think it supports udf functions..please consider using spark 2.x versions
– stack0114106
Nov 15 '18 at 14:38
Sorry, couldn't able to do as we have CDH 5.14. parcel,if any any alternative please suggest
– Arif Rizwan
Nov 15 '18 at 14:44
this cloudera version might have spark 2.x.. you might be launching "spark-shell", pls try launching using "spark2-shell". Also in which step you are getting error? is it udf()?
– stack0114106
Nov 15 '18 at 14:48
|
show 3 more comments
Use udf() for splitting the string and then explode it. Check this out:
scala> val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
scala>
Update:
the split2() is just splitting the string by 2 bytes each and creating an array.
The explode functions duplicates the row based on the length of the array, giving each index value for all the rows.
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> "12345678".sliding(4,4).toArray
res171: Array[String] = Array(1234, 5678)
rror: type mismatch; [ERROR] found : Symbol [ERROR] required: org.apache.spark.sql.Column [ERROR] df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show [ERROR] ^ [ERROR] one error found i have scala 2.12.x and spark 1.6.x(working environment)
– Arif Rizwan
Nov 15 '18 at 14:32
what is your df.schema?
– stack0114106
Nov 15 '18 at 14:35
spark 1.6 old.. I don't think it supports udf functions..please consider using spark 2.x versions
– stack0114106
Nov 15 '18 at 14:38
Sorry, couldn't able to do as we have CDH 5.14. parcel,if any any alternative please suggest
– Arif Rizwan
Nov 15 '18 at 14:44
this cloudera version might have spark 2.x.. you might be launching "spark-shell", pls try launching using "spark2-shell". Also in which step you are getting error? is it udf()?
– stack0114106
Nov 15 '18 at 14:48
|
show 3 more comments
Use udf() for splitting the string and then explode it. Check this out:
scala> val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
scala>
Update:
the split2() is just splitting the string by 2 bytes each and creating an array.
The explode functions duplicates the row based on the length of the array, giving each index value for all the rows.
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> "12345678".sliding(4,4).toArray
res171: Array[String] = Array(1234, 5678)
Use udf() for splitting the string and then explode it. Check this out:
scala> val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
scala>
Update:
the split2() is just splitting the string by 2 bytes each and creating an array.
The explode functions duplicates the row based on the length of the array, giving each index value for all the rows.
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> split2("12345678")
res168: Array[String] = Array(12, 34, 56, 78)
scala> "12345678".sliding(4,4).toArray
res171: Array[String] = Array(1234, 5678)
edited Nov 15 '18 at 15:19
answered Nov 15 '18 at 10:16
stack0114106stack0114106
3,8582420
3,8582420
rror: type mismatch; [ERROR] found : Symbol [ERROR] required: org.apache.spark.sql.Column [ERROR] df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show [ERROR] ^ [ERROR] one error found i have scala 2.12.x and spark 1.6.x(working environment)
– Arif Rizwan
Nov 15 '18 at 14:32
what is your df.schema?
– stack0114106
Nov 15 '18 at 14:35
spark 1.6 old.. I don't think it supports udf functions..please consider using spark 2.x versions
– stack0114106
Nov 15 '18 at 14:38
Sorry, couldn't able to do as we have CDH 5.14. parcel,if any any alternative please suggest
– Arif Rizwan
Nov 15 '18 at 14:44
this cloudera version might have spark 2.x.. you might be launching "spark-shell", pls try launching using "spark2-shell". Also in which step you are getting error? is it udf()?
– stack0114106
Nov 15 '18 at 14:48
|
show 3 more comments
rror: type mismatch; [ERROR] found : Symbol [ERROR] required: org.apache.spark.sql.Column [ERROR] df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show [ERROR] ^ [ERROR] one error found i have scala 2.12.x and spark 1.6.x(working environment)
– Arif Rizwan
Nov 15 '18 at 14:32
what is your df.schema?
– stack0114106
Nov 15 '18 at 14:35
spark 1.6 old.. I don't think it supports udf functions..please consider using spark 2.x versions
– stack0114106
Nov 15 '18 at 14:38
Sorry, couldn't able to do as we have CDH 5.14. parcel,if any any alternative please suggest
– Arif Rizwan
Nov 15 '18 at 14:44
this cloudera version might have spark 2.x.. you might be launching "spark-shell", pls try launching using "spark2-shell". Also in which step you are getting error? is it udf()?
– stack0114106
Nov 15 '18 at 14:48
rror: type mismatch; [ERROR] found : Symbol [ERROR] required: org.apache.spark.sql.Column [ERROR] df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show [ERROR] ^ [ERROR] one error found i have scala 2.12.x and spark 1.6.x(working environment)
– Arif Rizwan
Nov 15 '18 at 14:32
rror: type mismatch; [ERROR] found : Symbol [ERROR] required: org.apache.spark.sql.Column [ERROR] df.withColumn("newcol",explode(myudf_split2('col2))).select("col1","newcol").show [ERROR] ^ [ERROR] one error found i have scala 2.12.x and spark 1.6.x(working environment)
– Arif Rizwan
Nov 15 '18 at 14:32
what is your df.schema?
– stack0114106
Nov 15 '18 at 14:35
what is your df.schema?
– stack0114106
Nov 15 '18 at 14:35
spark 1.6 old.. I don't think it supports udf functions..please consider using spark 2.x versions
– stack0114106
Nov 15 '18 at 14:38
spark 1.6 old.. I don't think it supports udf functions..please consider using spark 2.x versions
– stack0114106
Nov 15 '18 at 14:38
Sorry, couldn't able to do as we have CDH 5.14. parcel,if any any alternative please suggest
– Arif Rizwan
Nov 15 '18 at 14:44
Sorry, couldn't able to do as we have CDH 5.14. parcel,if any any alternative please suggest
– Arif Rizwan
Nov 15 '18 at 14:44
this cloudera version might have spark 2.x.. you might be launching "spark-shell", pls try launching using "spark2-shell". Also in which step you are getting error? is it udf()?
– stack0114106
Nov 15 '18 at 14:48
this cloudera version might have spark 2.x.. you might be launching "spark-shell", pls try launching using "spark2-shell". Also in which step you are getting error? is it udf()?
– stack0114106
Nov 15 '18 at 14:48
|
show 3 more comments
val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2(df.col("col2")))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
add a comment |
val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2(df.col("col2")))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
add a comment |
val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2(df.col("col2")))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
val df = Seq(("abc","2E2J2K2F"),("bcd","2K3D")).toDF("col1","col2")
df: org.apache.spark.sql.DataFrame = [col1: string, col2: string]
scala> def split2(x:String):Array[String] = x.sliding(2,2).toArray
split2: (x: String)Array[String]
scala> val myudf_split2 = udf ( split2(_:String):Array[String] )
myudf_split2: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(,ArrayType(StringType,true),Some(List(StringType)))
scala> df.withColumn("newcol",explode(myudf_split2(df.col("col2")))).select("col1","newcol").show
+----+------+
|col1|newcol|
+----+------+
| abc| 2E|
| abc| 2J|
| abc| 2K|
| abc| 2F|
| bcd| 2K|
| bcd| 3D|
+----+------+
answered Nov 15 '18 at 15:16
Arif RizwanArif Rizwan
32
32
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53309613%2fdataframe-from-hive-table-to-iterate-through-each-element-for-some-operation-and%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
|col1|col2| +----+--------+ | abc|2E2J2K2F| | bcd| 2K3D| +----+--------+ expected output +-----+-----+ | col1| col2| +----+------+ | abc| 2E| | abc| 2J| | abc| 2K| | abc| 2F| | bcd| 2K| | bcd| 3D| +----+------+ +----+------+
– Arif Rizwan
Nov 14 '18 at 22:26